• Title/Summary/Keyword: Fracture model

Search Result 1,291, Processing Time 0.033 seconds

A study on detection of tool fracture and chipping using acoustic emission (Acoustic emission을 이용한 공구파손 및 chipping의 탐지에 관한 연구)

  • 강명순;한응교;최성주
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.28-36
    • /
    • 1986
  • This study was investigated the feasibility of AE application on in-process detection of tool fracture and chipping. Carbon steel SM45C workpiece with longitudinal slots was turned interruptedly on a lathe. AE RMS signal at tool fracture was observed and also the tangential force and the feed observed at the time of tool fracture, the levels of tangential force and the feed force at the time of fracture decrease considerably. In chipping, high level AE signal was observed but there were no changes of cutting force. Peak AE RMS squared is proportional to the area of tool fracture and resultant force. Fracture model of tool fracture is proposed as $V_{p}$ = $C_{1}$ $E_{1}$F(.DELTA. A)$_{0.5}$ and peak AE RMS shows strong correlation with the fracture parameter F(.DELTA.A)$^{0.5}$.

  • PDF

Development of Tool Fracture Index for Detection of Tool Fracture in Milling Process (밀링시 공구 파손 검출을 위한 공구 파손 지수의 도출)

  • 김기대;오영탁;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.881-888
    • /
    • 1997
  • A new algorithm for detection of tool fracture in milling process was developed. The variation of the peak-to-valley value of cutting load was used in this algorithm. Various kinds of vectors representing the condition of tool, such as tool condition vector, reference tool condition vector, tool condition variation vector were defined. Using these vectors, tool fracture index which represents the magnitude of tool fracture and is independent of tool run-outs is developed. Small and large tool fracture and chipping under various cutting condition could be detected using proposed tool fracture index, which was proved with cutting force model and experiments.

  • PDF

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Experimental studies on mass transport in groundwater through fracture network using artificial fracture model

  • Tsuchihara Takeo;Yoshimura Masahito;Ishida Satoshi;Imaizumi Masayuki;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.676-683
    • /
    • 2003
  • A laboratory experiment using artificial fracture rocks was used to understand the 3-dimensional dispersion of a tracer and the mixing process in a fractured network. In this experiment, 12cm polystyrene foam cubes with two electrodes for monitoring electric conductivity (EC) were used as artificial fractured rocks. Distilled water with 0.5mS/m was used as a tracer in water with 35mS/m and the difference of EC between the tracer and the water was monitored by a multipoint simultaneous measurement system of electrical resistance. The results showed that even if the fracture arrangement pattern was not straight in the direction of the flow, the tracer did not diffuse along individual fractures and an oval tracer plume, which was the distribution of tracer concentrations, tended to be form in the direction of the flow. The vertical cross section of the tracer distribution showed small diffusivity in the vertical direction. The calculated total tracer volume passing through each measurement point in the horizontal cross section showed while that the solute passed through measurement points near the direction of hydraulic gradient and in other directions, the passed tracer volumes were small. Using Peclet number as a criterion, it was found that the mass distribution at the fracture intersection was controlled in the stage of transition between the complete mixing model and the streamline routing model.

  • PDF

Therapeutic effects of 1α,25 dihydroxycholecalciferol on osteoporotic fracture in a rat model (랫드에서 1α,25 dihydroxycholecalciferol의 골다공증성 골절 치유효과)

  • Bae, Chun-sik
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.974-985
    • /
    • 1999
  • Osteoporosis is defined as a decrease in bone mass that leads to an increased risk of fracture. The therapeutic effect of $1{\alpha}$,25 dihydroxycholecalciferol, the hormonal form of vitamin $D_3$ that mediates calcium translation in intestine and bone, on the healing process of fracture has still been controversial. These studies were designed to understand the healing process of normal fibular fracture, the osteoporotic changes after ovariectomy, and the therapeutic effects of $1{\alpha}$,25 dihydroxycholecalciferol on the osteoporotic fracture in rats. The simple transverse fractures of rat fibulae were produced with a rotating diamond saw. The changes of the biochemical and mechanical indices of rats were investigated. The mechanical study based on bending test revealed the healing of the fibular fracture in the 5th week after simple transverse fracture. The osteoporosis impaired more the healing of osteoporotic fibular fracture than normal non-osteoporotic fibular fracture. The healing process of osteoporotic fracture was facilitated by the treatment with $1{\alpha}$,25 dihydroxycholecalciferol, however, was delayed more than the healing process of normal fracture. The bone strength based on the bending test also confirmed this tendency. The bone strengths in the 5th week after fracture of normal bone, osteoporotic bone, and $1{\alpha}$,25 dihydroxycholecalciferol-treated osteoporotic bone were 75%, 41%, and 67%, respectively, in comparison with those of intact bone. In conclusion, $1{\alpha}$,25 dihydroxycholecalciferol was effective in promoting the osteoporotic fracture healing.

  • PDF

Fractal Model of Transient Flow in a Dual-porosity Aquifer with Constant-head Upper Boundary (일정수두 상부경계를 가지는 이중공극 대수층내 부정류에 관한 프락탈모델)

  • 함세영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 1997
  • So far, several fractal models of fluid flow in a fractured aquifer have been developed. In this study, a new fractal model is derived that considers transient flow in the dual-porosity aquifer with the fracture skin between the fissure and the block, and the storage capacity and the wellbore skin on the pumping well. Constant-head upper boundary is specified in the block. This model is a generalized one which comprises both modified Hantush equation (1960) and Boulton-Streltsova equation (1978). Type curves are plotted for different flow dimensions (0.5, 1, 1.5, 2, 2.5 and 3) with various values of the leakage factor and the fracture skin. They show dimensionless drawdown in the pumping well and observation wells located either in the fissure system or in the matrix block.

  • PDF

Assessment of Xenogenic Bone Plate and Screw using Finite Element Analysis

  • Heo, Su-young;Lee, Dong-bin;Kim, Nam-soo
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior of xenogenic bone plate system (equine bone) using a three-dimensional finite element ulna fracture model. The model was used to calculate the Von Mises stress (VMS) and stress distribution in fracture healing periods with metallic bone plate and xenogenic bone plate systems, which are installed while the canine patient is standing. Bone healing rate (BHR) (0%) and maximum VMS of the xenogenic plate was similar to the yield strength of equine bone (125 MPa). VMS at the ulna and fracture zones were higher with the xenogenic bone plate than with the metallic bone plate at BHRs of 0% and 1%. Stress distributions in fracture zone were higher with the xenogenic bone plate than the metallic bone plate. This study results indicate that the xenogenic bone plate may be considered more beneficial for callus formation and bone healing than the metallic bon plate. Xeonogenic bone plate and screw applied in clinical treatment of canines may provide reduced stress shielding of fractures during healing.

Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides

  • Seyeon Kim;Sanghoon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1975-1988
    • /
    • 2024
  • It is important to maintain cladding integrity in spent nuclear fuel management. This study proposes a numerical analysis method to evaluate the fracture resistance of irradiated zirconium alloy cladding under pinch load known to cause Mode-III failure. The mechanical behavior and fracture of the cladding under pinch loading can be evaluated by a Ring Compression Test (RCT). To simulate the fracture of hydride precipitates, zirconium matrix, and Zr/hydride interfaces under the stress field generated by RCT, a micro-structure crack propagation simulation method based on Continuum Damage Mechanics (CDM) has been proposed. Our RCT simulation model was constructed from microscopic images of irradiated cladding. In this study, we developed an automated process to generate a pixel-based finite element model by separating the hydride precipitates, zirconium matrix, and interfaces using an image segmentation method. The appropriate element size was selected to ensure the efficiency and accuracy of a crack propagation simulation. The load-displacement curves and strain energies from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to establish the failure criterion of fuel rods under pinch loading. The advantages and limitations of the proposed method are fully discussed here.

Estimation of Brittle Fracture Behavior of SA508 Carbon Steel by Considering Temperature Dependence of Damage Model (손상모델의 온도의존성을 고려한 SA508 탄소강의 취성파괴 평가)

  • Choi, Shin-Beom;Jeong, Jae-Uk;Choi, Jae-Boong;Chang, Yoon-Suk;Ko, Han-Ok;Kim, Min-Chul;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.513-521
    • /
    • 2012
  • The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi-island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR-6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.