• Title/Summary/Keyword: Fracture elements

Search Result 284, Processing Time 0.021 seconds

A Study on the Various Noerok from Janggi-myeon, Pohang (포항 장기면 일대에 산출되는 뇌록의 다양성 연구)

  • Mun, Seong Woo;Kim, Jae Hwan;Kong, Dal-Yong;Moon, Dong Hyeok;Jeong, Hye Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.195-205
    • /
    • 2018
  • Noerok is a green pigment made of mineral used the Gachil(priming coat) of wooden architecture in Chosun Dynasty era. It has been reported that various Noerok are discovered in Janggimyeon, Pohang. In this study, The Noerok from two places is compared and discussed. Noerok in the two places has blulsh-green to green color, and it is similar to their occurrences on fracture filling, vein and dike on outcrop. However, there are differences between two sites according to its petrological feature, mineral composition and geochemistry. While the Noeseongsan sample is mostly celadonite, Gwangjeongsan samples are characterized by celadonite with varying contents of cristobalite, tridymite, feldspar, along with some vitrified contents. In terms of major elements, the amount of $Al_2O_3$, $Fe_2O_3$, MgO and $K_2O$ decreases linearly with increasing $SiO_2$, whereas $Fe_2O_3$ is linearly proportional to MgO. In summary, Noerok in the study areas can be classified into 4 types (type 1, type 2, type 3-1, type 3-2) base on color, mineral composition, elemental composition, and vitrification grade.

Determination of Equivalent Hydraulic Conductivity of Rock Mass Using Three-Dimensional Discontinuity Network (삼차원 불연속면 연결망을 이용한 암반의 등가수리전도도 결정에 대한 연구)

  • 방상혁;전석원;최종근
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.52-63
    • /
    • 2003
  • Discontinuities such as faults, fractures and joints in rock mass play the dominant role in the mechanical and hydraulic properties of the rock mass. The key factors that influence on the flow of groundwater are hydraulic and geometric characteristics of discontinuities and their connectivity. In this study, a program that analyzes groundwater flow in the 3D discontinuity network was developed on the assumption that the discontinuity characteristics such as density, trace length, orientation and aperture have particular distribution functions. This program generates discontinuities in a three-dimensional space and analyzes their connectivity and groundwater flow. Due to the limited computing capacity In this study, REV was not exactly determined, but it was inferred to be greater than 25$\times$25$\times$25 ㎥. By calculating the extent of aperture that influences on the groundwater flow, it was found that the discontinuities with the aperture smaller than 30% of the mean aperture had little influence on the groundwater flow. In addition, there was little difference in the equivalent hydraulic conductivity for the the two cases when considering and not considering the boundary effect. It was because the groundwater flow was mostly influenced by the discontinuities with large aperture. Among the parameters considered in this study, the length, aperture, and orientation of discontinuities had the greatest influence on the equivalent hydraulic conductivity of rock mass in their order. In case of existence of a fault in rock mass, elements of the equivalent hydraulic conductivity tensor parallel to the fault fairly increased in their magnitude but those perpendicular to the fault were increased in a very small amount at the first stage and then converged.

Geochemical Exploration Technics in the Pungchon Limestone Area (풍촌 석회암지대 탐사에 적용될 새 지화학탐사법 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.369-381
    • /
    • 1990
  • Most of significant ore deposits in South Korea such as the Sangdong W - Mo, the Yeonhwa Pb-Zn and the Geodo Cu-Fe skarn ore deposits occur at the southern limb of the Hambaeg syncline in the Taebaeg Basin. The mineralization took place in the interbedded limestone of the Myobong Formation and the Pungchon limestone of the Great Limestone Group of the Cambrian age, generally striking E-W and dipping 25-30 degrees north. There are no outcrops of the skarn-type orebody at the northern limb of the syncline. In order to find a clue of a possible hidden orebody localized at the limestones in the northern limb, a lithogeochemical exploration by using carbon isotope and some elements such as Si, Ca, Fe and Al at the Sangdong Mine area has been attempted as for a modelling study. For this study, 45 samples from the Pungchon limestone which do not show any megascopic indication of mineralization have been taken in both the mineralized zone and the unminerallized zone at the Sangdong Mine area. Analytical data show that there are big differences in the contents of CaO and $Al_2O_3$ between the Pungchon limestone of the mineralized zone and that of the unmineralized zone. Carbon isotope data exhibit that ${\delta}^{13}C$ values of the Pungchon limestone in the mineralized zone are highter than those in the unmineralized zone. The difference in the analytical values of CaO, $Al_2O_3$ and the carbon isotope between the mineralized and the unmineralized zones is as follows ; Unminerallized zone Mineralized zone CaO 51.3% 43.5% $Al_2O_3$ 0.6% 2.4% ${\delta}^{13}C$ -0.39 permil -0.56 permil $Fe_2O_3$ 0.9% 1.4% $SiO_2$ 3.0% 2.4% The decrease in the Si content of the Pungchon limestone in the mineralized zone is contrary to the result of the previous study (Moon, 1987). On the basis of identification of the increase in the Al content of the limestone in the mineralized zone, it could be deduced that the decrease in the Si content of the Pungchon limestone might be due to the result of increase in the alteration products mainly occurred along fracture-system such as joint cracks or minor faults and that the phenomena shown by the Si and Al content in the mineralized zone might be derived from the thermal effect of granite extended mineralizing activity to the overlied limestone on the surface. Higher mean values of Fe and Al as well as lower mean values of carbon content and the ${\delta}^{13}C$ than mean values of those in the Pungchon limestone at the northern limb of the Hambaeg Syncline may be applicable in exploration for blind orebodies.

  • PDF

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF