• Title/Summary/Keyword: Fracture analysis

Search Result 3,051, Processing Time 0.027 seconds

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

Biomechanical Analysis of a Combined Interspinous Spacer with a Posterior Lumbar Fusion with Pedicle Screws (척추경나사못을 이용한 유합술과 동반 시술된 극돌기간 삽입기구의 생체역학적 연구)

  • Kim, Y.H.;Park, E.Y.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.276-282
    • /
    • 2015
  • Recently, during the multi-level fusion with pedicle screws, interspinous spacer are sometimes substituted for the most superior level of the fusion in an attempt to reduce the number of fusion level and likelihood of degeneration process at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the interspinous spacer combined with posterior lumbar fusion with a previously-validated 3-dimensional FE model of the intact lumbar spine (L1-S1). The post-operative models were made by modifying the intact model to simulate the implantation of interspinous spacer and pedicle screws at the L3-4 and L4-5. Four different configurations of the post-op model were considered: (1) a normal spinal model; (2) Type 1, one-level fusion using posterior pedicle screws at the L4-5; (3) Type 2, two-level (L3-5) fusion; (4) Type 3, Type 1 plus Coflex$^{TM}$ at the L3-4. hybrid protocol (intact: 10 Nm) with a compressive follower load of 400N were used to flex, extend, axially rotate and laterally bend the FE model. As compared to the intact model, Type 2 showed the greatest increase in Range of motion (ROM) at the adjacent level (L2-3), followed Type 3, and Type 1 depending on the loading type. At L3-4, ROM of Type 2 was reduced by 34~56% regardless of loading mode, as compared to decrease of 55% in Type 3 only in extension. In case of normal bone strength model (Type 3_Normal), PVMS at the process and the pedicle remained less than 20% of their yield strengths regardless of loading, except in extension (about 35%). However, for the osteoporotic model (Type 3_Osteoporotic), it reached up to 56% in extension indicating increased susceptibility to fracture. This study suggested that substitution of the superior level fusion with the interspinous spacer in multi-level fusion may be able to offer similar biomechanical outcome and stability while reducing likelihood of adjacent level degeneration.

Abnormal Response Analysis of a Cable-Stayed Bridge using Gradual Bilinear Method (Gradual Bilinear Method를 이용한 사장교의 케이블 손상응답 해석)

  • Kim, Byeong-Cheol;Park, Ki-Tae;Kim, Tae-Heon;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.60-71
    • /
    • 2014
  • Cable-stayed bridge, which is one of the representative long-spanned bridge, needs prompt maintenances when a stay cable is damaged because it may cause structural failure of the entire bridge. Many researches are being conducted to develop abnormal behavior detection algorithms for the purpose of shortening the reaction time after the occurrence of structural damage. To improve the accuracy of the damage detection algorithm, ample observation data from various kinds of damage responses is needed. However, it is difficult to measure an abnormal response by damaging an existing bridge, numerical simulation can be an effective alternative. In most previous studies, which simulate the damage responses of a cable-stayed bridge, the damages has been considered as a load variation without regard to its stiffness variation. The analyses of using these simplification could not calculate exact responses of damaged structure, though it may reserve a sufficient accuracy for the purpose of bridge design. This study suggests Gradual Bilinear Method (GBM) which simulate the damage responses of cable-stayed bridge considering the stiffness and mass variation, and develops an analysis program. The developed program is verified from the responses of a simple model. The responses of a existing cable-stayed bridge model are analyzed with respect to the fracture delay time and damage ratio. The results of this study can be used to develop and verify the highly accurate abnormal behavior detection algorithm for safety management of architecture/large structures.

Reliability Prediction of Failure Modes due to Pressure in Solid Rocket Case (고체로켓 케이스 내압파열 고장모드의 신뢰도예측)

  • Kim, Dong-Seong;Yoo, Min-Young;Kim, Hee-Seong;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.635-642
    • /
    • 2014
  • In this paper, an efficient technique is developed to predict failure probability of three failure modes(case rupture, fracture and bolt breakage) related to solid rocket motor case due to the inner pressure during the mission flight. The overall procedure consists of the steps: 1) design parameters affecting the case failure are identified and their uncertainties are modelled by probability distribution, 2) combustion analysis in the interior of the case is carried out to obtain maximum expected operating pressure(MEOP), 3) stress and other structural performances are evaluated by finite element analysis(FEA), and 4) failure probabilities are calculated for the above mentioned failure modes. Axi-symmetric assumption for FEA is employed for simplification while contact between bolted joint is accounted for. Efficient procedure is developed to evaluate failure probability which consists of finding first an Most Probable Failure Point(MPP) using First-Order Reliability Method(FORM), next making a response surface model around the MPP using Latin Hypercube Sampling(LHS), and finally calculating failure probability by employing Importance Sampling.

Detailed Processing and Analysis on the Single-channel Seismic Data for Site Survey of Daecheon-Wonsando Subsea Tunnel (대천-원산도 해저터널 부지조사를 위한 단일채널 탄성파자료의 정밀 처리 및 분석)

  • Kim, Won-Sik;Park, Keun-Pil;Kim, Hyun-Do;Cheong, Snons;Koo, Nam-Hyung;Lee, Ho-Young;Park, Eui-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.336-348
    • /
    • 2010
  • The Single-channel seismic survey with the source of bubble pulser and drilling survey was carried out in 2008 and 2009 for the site survey of Daecheon-Wonsando area, which was a proposed area of Korea-China subsea tunnel. The goal of this study is to analyze the depth and characteristics of acoustic basement for the stability assessment and tunnel design in this proposed area through combining drilling data with this single-channel seismic data after detailed processing. For this purpose, among the data processing schemes which are usually applied to multi-channel seismic data, we applied the F-K filtering to eliminate the AC(alternating current) noise and the post-stack depth migration to produce depth section. As a result, we verified that the improved depth section could be obtained from single-channel seismic data, and the distribution and characteristics of basement could be analyzed in survey area through the combined analysis with drilling data. However, we could not interpret the detailed structures, fault and fracture zone, due to the quality of bubble pulser source and single-channel data. We expect that those detailed structures can be analyzed when higher resolution seismic data is provided. Therefore, we recommend some items for future seismic survey of subsea tunnel to obtain the high resolution seismic data.

Survival analysis of dental implants in maxillary and mandibular molar regions; A 4$\sim$5 year report ($\cdot$하악 대구치 부위에 식립된 임플란트의 생존율에 대한 후향적 연구)

  • Jang, Jin-Wha;Ryoo, Gyeong-Ho;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.2
    • /
    • pp.165-180
    • /
    • 2007
  • Dental Implants have been proved to be successful prosthetic modality in edentulous patients for 10 years. However, there are few reports on the survival of implant according to location in molar regions. The purpose of this study was to evaluate the $4{\sim}5$ years' cumulative survival rate and the cause of failure of dental implants in different locations for maxillary and mandibular molars. Among the implants placed in molar regions in Gwangju Mir Dental Hospital from Jan. 2001 to Jun. 2002, 473 implants from 166 patients(age range; $26{\sim}75$) were followed and evaluated retrospectively for the causes of failure. We included 417 implants in 126 periodontally compromised patients, 56 implants in 40 periodontal healthy patients, and 205 maxillary and 268 mandibular molar implants. Implant survival rates by various subject factors, surgical factors, fixture factors, and prosthetic factors at each location were compared using Chi-square test and Kaplan-Meier cumulative survival analysis was done for follow-up(FU) periods. The overall failure rate at 5 years was 1O.2%(subject level) and 5.5%(implant level). The overall survival rates of implants during the FU periods were 94.5% with 91.3% in maxillary first molar, 91.1% in maxillary second molar, 99.2% in mandibular first molar and 94,8% in mandibular second molar regions. The survival rates differed significantly between both jaws and among different implant locations(p<0.05), whereas the survival rates of functionally loaded implants were similar in different locations. The survival rates were not different according to gender, age, previous periodontal status, surgery stage, bone graft type, or the prosthetic type. The overall survival rate was low in dental implant of too wide diameter(${\geq}5.75$ mm) and the survival rate was significantly lower for wider implant diameter(p

Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

  • Pedulla, Eugenio;Lo Savio, Fabio;La Rosa, Giusy Rita Maria;Miccoli, Gabriele;Bruno, Elena;Rapisarda, Silvia;Chang, Seok Woo;Rapisarda, Ernesto;La Rosa, Guido;Gambarini, Gianluca;Testarelli, Luca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • Objectives: To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods: One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal ($60^{\circ}$ angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results: Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions: The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.

A COMPARATIVE STUDY ON THE CANAL CONFIGURATION AFTER SHAPING BY PROFILE, PROTAPERTM AND K-FLEXOFILE IN SIMULATED CANALS WITH DIFFERENT ANGLES OF CURVATURE (ProFile, ProTaperTM K-Flexofile 근관 성형시 근관의 만곡도에 따른 근관 형태 변화 비교연구)

  • Lee, Bo-Kum;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.294-302
    • /
    • 2005
  • The purpose of this study was to evaluate the canal configuration after shaping by ProFile. ProTaper and K-Flexofile in simulated resin canals with different angles of curvature. Three types of instruments were used: ProFile. ProTaper. K-Flexofile. Simulated root canals. which were made of epoxy resin. were prepared by ProFile. ProTaper with rotary instrument using a crown-down pressureless technique. and hand instrumentation was performed by K-Flexofile using a step-back technique. All simulated. canals were prepared up to size 25 file at end-point of preparation. Pre and post instrumentation images were recorded with Scanner. Assessment of canal shape was completed with Image Analysis program. Measurements were made at 1. 2. 3. 4. 5. 6. 7. 8. 9 and 10mm from the apex. At each level. outer canal width. inner canal width. total canal width. and amount of transportation from original axis were recorded. Instrument deformation and fracture were recorded. Data were analyzed by means of one-way ANOVA analysis of variance and the Sheffe's test. The result was that ProFile and ProTaper maintain original canal shape regardless of the increase of angle of curvature than K-Flexofile. ProFile show significantly less canal transportation and maintained original canal shape better than ProTaper.

AN EXPERIMENTAL STUDY ON SHEAR BOND STRENGTH OF GLASS IONOMER CEMENT TO DENTIN SURFACE FOLLOWING SURFACE CONTIONING (상아질 표면처리가 글라스 아이오노머 시멘트의 결합강도에 미치는 영향에 관한 연구)

  • Lee, Kwang-Woo;Hong, Chan-Ui;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.104-114
    • /
    • 1992
  • The purpose of this study was to evaluate the shear bond strength of glass ionomer cement(Ketacfil, ESPE, Co.) against dentin surface which had been treated with surface conditioning agents(distilled water, 5% sodium hypochlorite solution, Ketac - conditioner, 40% polyacrylic acid). In this study, 60 human molars with sound and healthy crown portion which were previously extracted for orthodontic or periodontal problem. The dentin surfaces of these teeth were exposed with wet trimmer and polished with 150 - grit and 600 - grit silicon carbide paper and the teeth were divided into four groups(15 teeth per group) according to the following surface conditioning methods. Group I : Surface treatment with distilled water as control group. Group II : Surface conditioning with 5% sodium hypochlorite solution. Group III : Surface conditioning with Ketac conditioner. Group IV : Surface conditioning with 40% polyacrylic acid. The shear bond strengths were measured by Autograph(Shimatzu Co. Japan). The result of the evaluations were then subjected to statistical analysis using one - way analysis of variance and Duncan test and the results were as follows : 1. The shear bond strength accrding to the dentin surface conditioning conditions was highest in Ketac conditioner group, with measurements of $44.44{\pm}0.74(kg/cm^2)$ and lowest in the distilled water group, with measurements of $28.84{\pm}0.88(kg/cm^2)$. 2. Statistically significant differences were found between surface conditioning with 5% sodium hypochlorite solution group or Ketac conditioner group and distilled water group(P<0.01). 3. Also, statistically significant difference was found between surface conditioning with distilled water group and 40% polyacrylic acid group(P<0.05). 4. Overall difference in statistical significance between the groups was not found (P<0.05). 5. Fractured dentin surface treated with conditioning solutions showed cohesive fracture. 6. Distilled water group and 5% sodium hypochlorite solution group removed the smear layer less effectively. 7. Conditioning dentin with Ketac conditioner and 40% polyacrylic acid resulted in the removal of a significant amount of the smear layer without removing the tubular plugs and dissolving the peritubular dentin.

  • PDF

Suggestions for Safety Improvement of CNG Bus Based on Accident and Failure Analysis (CNG버스 사고원인 분석에 근거한 안전성 향상 방안에 대한 연구)

  • Yoon, Jae-Kun;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Three failure cases of CNG composite vessels were reported since after January 2005. The 1st and 2nd accidents were indebted to vessel defect and installation mistake. The 3rd was caused by gas leak at pipe connections. In this paper various aspects were studied based on information of the three failure analysis, which must be improved for better safety of the CNG bus system. Overpressure region caused by vessel explosion was theoretically predicted and also assessed by PHAST program. Explosion of 120 l vessel under 20 MPa is equivalent to 1.2 kg TNT explosion. The predicted value by PHAST was more serious than theoretical one. However, actual consequence of explosion was much less than both of the predicted consequences. Since the CNG vessel was designed by the performance based design methodology, it is difficult to verify whether the required process and tests were properly conducted or not after production. If material toughness is not enough, the vessel should be weak in brittle fracture at early in the morning of winter season since the metal temperature can be lower than the transition temperature. If autofrettage pressure is not correct, fatigue failure due to tensile stress during repeated charging is possible. One positive aspect is that fire did not ocurred after vessel failure. This may be indebted to fast diffusion of natural gas which hindered starting fire.

  • PDF