• 제목/요약/키워드: Fracture Test

검색결과 2,765건 처리시간 0.031초

Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties

  • Cifuentes, Hector;Lozano, Miguel;Holusova, Tana;Medina, Fernando;Seitl, Stanislav;Fernandez-Canteli, Alfonso
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.215-228
    • /
    • 2017
  • A new approach for measuring the specific fracture energy of concrete denoted modified disk-shaped compact tension (MDCT) test is presented. The procedure is based on previous ideas regarding the use of compact tension specimens for studying the fracture behavior of concrete but implies significant modifications of the specimen morphology in order to avoid premature failures (such as the breakage of concrete around the pulling load holes). The manufacturing and test performance is improved and simplified, enhancing the reliability of the material characterization. MDCT specimens are particularly suitable when fracture properties of already casted concrete structures are required. To evaluate the applicability of the MDCT test to estimate the size-independent specific fracture energy of concrete ($G_F$),the interaction between the fracture process zone of concrete andthe boundary of theMDCTspecimens at the end of the test is properly analyzed. Further, the experimental results of $G_F$ obtained by MDCT tests for normal- and high-strength self-compacting concrete mixes are compared with those obtained using the well-established three-point bending test. The procedure proposed furnishes promising results, and the $G_F$ values obtained are reliable enough for the specimen size range studied in this work.

압입법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구 (A study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ball Indentation Method)

  • 석창성;김정표;안하늘
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.151-159
    • /
    • 2001
  • As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the ageing evaluation technique by the BI method. The four classes of the thermally aged 1Cr-!mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method within 5%. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree.

  • PDF

압입법을 이용한 재료 열화의 평가에 관한 연구 (A Study on the Evaluation of Material Degradation using Ball Indentation Method)

  • 김정표;석창성;안하늘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.171-176
    • /
    • 2000
  • As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree.

  • PDF

직류전위차법을 이용한 배관 균열 길이 측정에 관한 연구 (A Study on the Measurement of the Crack Length Using the DCPD Method for the Fracture Test of the Pipe Specimen)

  • 박재실;석창성
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.640-647
    • /
    • 2004
  • In order to perform elastic-plastic fracture mechanical analyses, fracture resistance curves for concerned materials are required. The unloading compliance method and the DCPD(Direct Current Potential Drop) method have been widely used for measuring the crack length and the extension for a standard specimen fracture resistance curve test. However it is difficult to apply the unloading compliance method to a real pipe fracture resistance curve test. The objective of this paper is to propose the calibration equation between the normalized crack length and the normalized electric potential, and to apply to pipe fracture experiments. For these, finite element analyses were performed with various current input locations and crack front configurations. Also the 4-point bending jig was manufactured for a pipe test and the DCPD method was used to measure crack extensions and crack lengths for a pipe test. The calculated crack length by the DCPD method agreed with the measured crack length within 5% error.

Mode II Fracture Toughness of Hybrid FRCs

  • Abou El-Mal, H.S.S.;Sherbini, A.S.;Sallam, H.E.M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.475-486
    • /
    • 2015
  • Mode II fracture toughness ($K_{IIc}$) of fiber reinforced concrete (FRC) has been widely investigated under various patterns of test specimen geometries. Most of these studies were focused on single type fiber reinforced concrete. There is a lack in such studies for hybrid fiber reinforced concrete. In the current study, an experimental investigation of evaluating mode II fracture toughness ($K_{IIc}$) of hybrid fiber embedded in high strength concrete matrix has been reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction ($V_f$) of 1.5 %. The concrete matrix properties were kept the same for all hybrid FRC patterns. In an attempt to estimate a fairly accepted value of fracture toughness $K_{IIc}$, four testing geometries and loading types are employed in this investigation. Three different ratios of notch depth to specimen width (a/w) 0.3, 0.4, and 0.5 were implemented in this study. Mode II fracture toughness of concrete $K_{IIc}$ was found to decrease with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness $K_{IIc}$ was sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness ($K_{IIc}$). The four point shear test set up reflected the lowest values of mode II fracture toughness $K_{IIc}$ of concrete. The non damage defect concept proved that, double edge notch prism test setup is the most reliable test to measure pure mode II of concrete.

GF/PP 복합재료의 충격파괴거동에 대한 온도효과 (Temperature Effect on Impact Fracture Behavior of GF/PP Composites)

  • 고성위;엄윤성
    • 수산해양기술연구
    • /
    • 제41권1호
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

컴프레서용 Al-Si 합금의 파괴 및 마모 특성 (Fracture and Wear Characteristics of Al-Si alloy used for Compressor)

  • 김재훈;김덕회
    • Tribology and Lubricants
    • /
    • 제15권2호
    • /
    • pp.141-149
    • /
    • 1999
  • Fracture, fatigue and wear characteristics of Al-Si alloy used for compressor are experimentally studied. Plane strain fracture toughness test is carried out using three point bending specimen. Fatigue test is performed under constant loading condition and wear test is carried out as a function of sliding velocity and applied load. To obtain the crack propagation characteristics and wear mechanism of Al-Si alloy, fracture and worn surfaces are investigated using SEM. It is verified that fracture and fatigue strength of Al-Si alloy are improved by the fine microstructure of alloy. The wear behavior and specific wear amount of Al-Si alloy are not dependent on the microstructure but on a function of the silicon content. Anodizing on the surface of Al-Si alloy, surface hardness and wear characteristics are improved.

액상확산접합한 Ni기 단결정 초내열합금의 크리프 파단 및 피로특성 (Creep-Rupture and Fatigue Properties of Transient Liquid Phase Bonded Joints of Ni-Base Single Crystal Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.82-87
    • /
    • 2001
  • The creep-rupture and low cycle fatigue properties of transient liquid phase bonded joints of Ni-base single crystal superalloy, CMSX-2 was investigated using MBF-80 insert metal. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. CMSX-2 was bonded at 1523K for 1.8ks in vacuum, optimum bonding condition. The creep rupture strength and rupture lives of the joints were the almost identical to ones of the base metal. SEM observation of the fracture surfaces of joints after creep rupture test revealed that the fracture surfaces classified three types of region, ductile fracture surface, cleavage fracture surface and interfacial fracture surface. The low cycle fatigue properties of the joints were also the same level as those of base metal. The elongation and reduction of area values of joints were comparable to those of base metal while fell down on creep rupture condition of high temperature.

  • PDF

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

Olfactory Dysfunction in Nasal Bone Fracture

  • Kim, Sug Won;Park, Beom;Lee, Tae Geun;Kim, Ji Ye
    • 대한두개안면성형외과학회지
    • /
    • 제18권2호
    • /
    • pp.92-96
    • /
    • 2017
  • Background: All nasal bone fractures have the potential for worsening of olfactory function. However, few studies have studied the olfactory outcomes following reduction of nasal bone fractures. This study evaluates posttraumatic olfactory dysfunction in patients with nasal bone fracture before and after closed reduction. Methods: A prospective study was conducted for all patients presenting with nasal bone fracture (n=97). Each patient consenting to the study underwent the Korean version of Sniffin' Sticks test (KVSS II) before operation and at 6 month after closed reduction. The nasal fractures were divided according to the nasal bone fracture classification by Haug and Prather (Types I-IV). The olfactory scores were compared across fracture types and between preoperative and postoperative settings. Results: Olfactory dysfunction was frequent after nasal fracture (45/97, 46.4%). Our olfactory assessment using the KVSS II test revealed that fracture reduction was not associated with improvements in the mean test score in Type I or Type II fractures. More specifically, the mean posttraumatic Threshold, discrimination and identification score decreased from 28.8 points prior to operation to 23.1 point at 6 months for Type II fracture with septal fracture. Conclusion: Our study has revealed two alarming trends regarding post-nasal fracture olfactory dysfunction. First, our study demonstrated that almost half (46.4%) of nasal fracture patients experience posttraumatic olfactory dysfunction. Second, closed reduction of these fractures does not lead to improvements olfaction at 6 months, which suggest that olfactory dysfunction is probably due to factors other than the fracture itself. The association should be further explored between injuries that lead to nasal fracture and the mechanism behind posttraumatic olfactory dysfunction.