• Title/Summary/Keyword: Fracture Test

Search Result 2,765, Processing Time 0.031 seconds

Fracture property of steel fiber reinforced concrete at early age

  • Fu, Chuan-Qing;Ma, Qin-Yong;Jin, Xian-Yu;Shah, A.A.;Tian, Ye
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.31-47
    • /
    • 2014
  • This research is focused on obtaining the fracture property of steel fiber reinforced concrete(SFRC) specimens at early ages of 1, 2, 3 and 7-day, respectively. For this purpose, three point bending tests of nine groups of SFRC beams with notch of 40mm depth and different steel fiber ratios were conducted. The experimental results of early age specimens were compared with the 28-day hardened SFRC specimens. The test results indicated that the steel fiber ratios and curing age significantly influenced the fracture properties of SFRC. A reasonable addition of steel fiber improved the fracture toughness of SFRC, while the fracture energy of SFRC developed with curing age. Moreover, a quadratic relationship between splitting strength and fracture toughness was established based on the experiment results. Additionally, afinite element (FE) method was used to investigate the fracture properties of SFRC.A comparison between the FE analysis and experiment results was also made. The numerical analysis fitted well with the test results, and further details on the failure behaviors of SFRC could be revealed by the suggested numerical simulation method.

A Study on the Characteristic of Fracture Toughness in the Multi-Pass Welding Zone for Nuclear Piping (원전 배관재 다층 용접부의 파괴 특성에 관한 연구)

  • Park, Jae-Sil;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.381-389
    • /
    • 2001
  • The objective of this paper is to evaluate the fracture resistance characteristics of SA508 Cl.1a to SA508 Cl.3 welds manufactured for the reactor coolant loop piping system of nuclear power plants. The effect of the crack plane orientation to the welding process orientation and the preheat temperature on the fracture resistance characteristics were discussed. Results of the fracture resistance test showed that the effect of the crack plane orientation to the welding process orientation of the fracture toughness is significant, while that of preheat temperature on the fracture toughness is negligible. The micro Vickers hardness test, the metallographic observation and the fractography analysis were conducted to analyse the crack jump phenomenon on the L-R crack plane orientation in the multi-pass welding zone. As these results, it is shown that the crack jump phenomenon was produced because of the inhomogeneity between welding beads and the crack plane orientation must be considered for the safety of the welding zone in the piping system.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

Evaluation for Fracture Toughness with Considering the Thermal Energy (열에너지를 고려한 파괴인성치 고찰)

  • Park, Jae-Sil;Kim, Jeong-Pyo;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.9-15
    • /
    • 2001
  • In the case of a crack propagation, a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile test was carried out using thermocouples to monitor the variation of temperature with SA516 Gr70. The experimental results show that the temperature of specimen was increased $3.6^{\circ}C$ at static load condition. And the thermal effect was investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip ws lower about 19.3% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF

Effect of Hydrostatic Pressure on the Elastic Work Factor of Graphite/Epoxy Composites (정수압이 탄소섬유/에폭시 복합재의 탄성일인자에 미치는 영향)

  • 이지훈;김만태;신명근;한운용;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1390-1393
    • /
    • 2003
  • Work factor approach is conveniently used in metal fracture mechanics to determine fracture toughness from a single fracture test. In this work, we investigated the applicability of the work factor approach in order to determine fracture toughness of thick graphite/epoxy composites in the hydrostatic pressure environment from a single fracture test. The effect of hydrostatic pressure on the elastic work factor was studied, The stacking sequence used was multi-directional, [0$^{\circ}$/${\pm}$45$^{\circ}$/90$^{\circ}$]. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 300 MPa. The results showed that the elastic work factor was not affected by the hydrostatic pressure, The elastic work factor decreased in a linear fashion with crack length.

  • PDF

On Fracture Mechanism of SK-5 Steel by AE Method (AE에 의한 SK-5강의 파괴기구 구명)

  • Kim, Sang-Cheol;Lee, Ok-Seop;Ham, Kyeong-Chun;Oh, Beom-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.130-139
    • /
    • 1990
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, crack geometry and mechanical properties. It seems to be very important to investighate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their integrity. In this experimental research, fracture behaviors of SK-5 high carbon steel was investigated by using Acoustic Emission(AE) technique. Fracturing processes of materials were estimated through both the tension test with nominal specimens and the fracture test with compact tension specimens. The critical applied load which corresponds to the crack initiation and propagation is very improtant for the determination of yield strength of fracture toughness. The critical applied load($P_Q$) was determined through AE method and the source of AE signal was estimated by fractography analysis. The experimental results may contribute to the safety analyses and strength evaluation of structures.

  • PDF

Mechanical Behavior and Fracture Resistance of $SCS6/Si_3N_4$ CFCCs ($SCS6/Si_3N_4$ 연속섬유강화 세라믹 복합재료의 기계적 거동 및 파괴저항평가)

  • Yoon, Yu-Sung;Kwon, Oh-Heon;Jenkins, Michael G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.658-662
    • /
    • 2001
  • Continuous fiber ceramic composites(CPCCs) having the advantages of ceramics resistance to heat, eroson can be applied in chemical reactors and engine. CFCCs has relatively high stiffness in spite of low weight. In particular, it exhibits greatly increased toughness, which serves to decrease its inherent damage characteristics of the brittle nature of monolithic ceramics. In this wort, tensile and flexural test for SCS6 fiber/ $Si_3N_4$ matrix composites were studied. An objective of this study is to obtain the basic quantities of mechanical properties for tension and flexural test and link these to the fracture resistance behavior. Then, we showed that wok of fracture concept was useful as a method for describing fracture restance behavior of CFCCs.

  • PDF

AE Signals Characteristics from Fracture by Type of CFRP Stacking Structure (CFRP 적층 형태에 따른 파괴시 음향방출 신호특성)

  • 남기우;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2002
  • Damage process of CFRP laminates was characterized by Acoustic Emission (AE). The main objective of this study is to determine if the sources of AE in CERP laminates could be identified from the characteristics of the waveform signals recorded during monotonic tensile test. The time history and power spectrum of each individual wave signal recorded during test were examined and classified according to their special characteristics. The wave from and frequency of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pull-out and fiber fracture as load is increased. Four distinct types of signals were observed regardless of specimen condition. The result showed that the AE method could be effectively used for analysis of fracture mechanism in CFRP laminates.

A Study on High Temperature Fracture Toughness Characterisitics of Spring Steel by Compressive Residual Stress (압축잔류응력이 스프링강(SUP-9)의 고온파괴인성에 미치는 영향에 관한 연구)

  • Jung, Jae-Wook;Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.314-319
    • /
    • 2004
  • High temperature fracture toughness characteristics of shot peened spring steel(SUP-9), which is used for automobile suspension system and railroad, was investigated in this paper. Fracture tougness test for room temperature, $100^{\circ}C$ , and $200^{\circ}C$ were evaluated by material test system(MTS). The experimental results show that the fracture toughness was improved by peened and unpeened. The fracture toughness for high temperature were also improved by peened and unpeened.

  • PDF

Evaluation of Fracture Strength of WA-Vitrified and Resinoid Bond Grinding Wheels by Acoustic Emission (AE에 의한 WA계 비트리파이드 및 레지노이드 結合劑硏削숫돌의 破壞强度評價)

  • 강명순;한응교;권동호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.241-251
    • /
    • 1988
  • The purpose of this paper is to evaluate fracture strength of WA-vitrified and resinoid bond grinding wheels by means of acoustic emission. The paper conducts tension test, compression test, splitting tensile test and bending test with AE measuring system. These tests have been carried out in accordance with the grain sizes and grades of grinding wheels. The fracture strength of grinding wheels is evaluated by the clarification of biaxal fracture criterion of Babel and Sines. It clarifies the influence of factors of grinding wheel upon AE characteristics and evaluates the predictability of life of grinding wheels and the perception of fracture.