• Title/Summary/Keyword: Fracture Morphology

Search Result 171, Processing Time 0.025 seconds

Effects of Stirring Condition and Refining Element Addition on the Primary Si Particle Morphology of Hypereutectic Al-Si Alloys Semi-Solid State Processing (과공정 Al- Si 합금의 반응고 교반시 초정 Si 형상에 미치는 교반조건 및 개량원소 첨가 영향)

  • Kim, In-Joon;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • Microstructural characteristics of semi-solid state processed hypereutectic Al-Si alloys have been investigated. Main concern of the present study is to investigate the effects of P and Sr addition on the size and morphology change of the primary Si particles. Refinement of the primary Si particles was observed with the addition of P and Sr at the early stage of semi-solid state processing, but such a refining effects became negligible resulting in Si particles with a near-spherical morphology with continuous stirring. This implies that the microstructural transformation mechanism became more dependent to stirring effects than to the alloying effects during semi-solid state processing. Brittle fracture and agglomeration were proposed as the mechanisms for microstructural alterations during semi-solid state processing.

  • PDF

Effect of Degree of Interfacial Interlinking on Adhesive Strength and Fracture Morphology of Rubber Layers (고무층간 가교정도가 접착강도 및 파괴형태에 미치는 영향)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.31-44
    • /
    • 1999
  • Interfacial adhesive strength between the fully-crosslinked and partially-crosslinked rubber layers were Investigated at the temperature range of $30{\sim}120^{\circ}C$ for four different rubbers(NR, SBR, EPDM, BIMS). The surfaces of interfacial failure were also investigated using a scanning electron microscopy(SEM). The physical interlinking played a major role in the adhesive strength between the fully-crosslinked rubber layers. When a partially-crosslinked rubber layer was bonded to the fully-crosslinked one, the chemical as well as the physical interlinking affected the adhesive strength. NR showed a "interfacial knotty tearing" pattern, while EPDM showed a typical "cross-hatched" one when the adhesive strength approached to the cohesive tear strength of each material.

  • PDF

Analysis of the Failure Stress in Pyrotechnically Releasable Mechanical Linking Device

  • Lee, Yeung-Jo;Kim, Dong-Jin;Kang, Won-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.813-822
    • /
    • 2008
  • The present work has been developed the interpretation processor including analysis of the failure stress in pyrotechnically releasable mechanical linking device, which has the release characteristic without fragmentation and pyro-shock, using SoildWorks, COSMOS Works and ANSYS programs. The aim of the invention is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyrotechnically releasable mechanical linking device according to the invention is simple, compact and inexpensive in structure. It is simple to implement and permit the use of only a reduced quantity of pyrotechnic composition, such composition possibly being devoid of any primary explosive at all. The present work is only focused on the design of structure and the material characteristics. To analyze the fracture morphology resulted from tensile test in the different ball type bolts, the present work has been performed to estimate the failure stress of material and to make the same result from tensile test. The failure stress of SUS 630 in ductile material is approximately 1050 Mpa. The failure stress of SUS 420 in brittle material is about 1790 Mpa. Among the models used the ductile material, the model 6 is suitable a design of structure compared to that of other models. The use of this interpretation processor developed the present work could be extensively helped to estimate the failure stress of material having a complex geometry such as the ball type bolt

  • PDF

THE EFFECT OF SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF REPAIRED COMPOSITES (광중합형 복합레진 수리시 표면처리가 전단결합강도에 미치는 영향)

  • Moon, Jang-Won;Lee, Kwang-Won;Park, Soo-Joung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.156-165
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength between new and old composites. Circular cavities prepared on the center of acrylic resin mold and the prepared cavities were filled with composite resin. They randomly assigned into control group and 8 groups according to the difference in surface treatments of old composites; Control group: no surface treatment, Group 1: surface treated with #120 SiC paper & bonding agent, Group 2: surface treated with #400 SiC paper & bonding agent, Group 3: surface treated with #120 SiC paper, 32% $H_3PO_4$ & bonding agent, Group 4: surface treated with #400 SiC paper, 32% $H_3PO_4$ & bonding agent, Group 5: surface treated with #120 SiC paper, primer & bonding agent, Group 6: surface treated with #400 SiC paper, primer & bonding agent, Group 7: surface treated with #120 SiC paper, 32% $H_3PO_4$, primer & bonding agent, Group 8: surface treated with #400 SiC paper, 32% $H_3PO_4$, primer & bonding agent. New composites were applicated on the old composites of experimental groups. The shear bond strengths for the experimental specimen were measured and the results were analyzed by using one way ANOVA. The observations of surface morphology after SiC paper roughening and debonded surface morphology after shear bond strength test were done by SEM. The results were as follows; 1. Shear bond strengths for specimens roughened with #120 SiC paper matching with the particle size of coarse diamond bur were significantly higher than those for the specimens with #400 SiC paper(P<0.05). By SEM, the surface of the specimens roughened with #120 SiC paper was more irregular than the specimens with #400 SiC paper. 2. Shear bond strengths for specimens treated with 32% $H_3PO_4$ etchant, primer, bonding resin were significantly higher than those for specimens treated with 32% $H_3PO_4$ and bonding resin(P<0.05). 3. Shear bond strengths for the specimens treated with 32% $H_3PO_4$ etchant and bonding resin were significantly higher than those for specimens treated with only bonding resin(P<0.05). There was no remarkable change of surface morphology after 32% $H_3PO_4$ etching. 4. It was possible to observe mixed fracture patterns (the cohesive fracture of old composite and the adhesive fracture between old and new composite) in the specimens roughened with #120 SiC paper, but almost adhesive fracture in the specimens roughened with #400 SiC paper.

  • PDF

Modified Disk-Shaped Compact Tension Test for Measuring Concrete Fracture Properties

  • Cifuentes, Hector;Lozano, Miguel;Holusova, Tana;Medina, Fernando;Seitl, Stanislav;Fernandez-Canteli, Alfonso
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.215-228
    • /
    • 2017
  • A new approach for measuring the specific fracture energy of concrete denoted modified disk-shaped compact tension (MDCT) test is presented. The procedure is based on previous ideas regarding the use of compact tension specimens for studying the fracture behavior of concrete but implies significant modifications of the specimen morphology in order to avoid premature failures (such as the breakage of concrete around the pulling load holes). The manufacturing and test performance is improved and simplified, enhancing the reliability of the material characterization. MDCT specimens are particularly suitable when fracture properties of already casted concrete structures are required. To evaluate the applicability of the MDCT test to estimate the size-independent specific fracture energy of concrete ($G_F$),the interaction between the fracture process zone of concrete andthe boundary of theMDCTspecimens at the end of the test is properly analyzed. Further, the experimental results of $G_F$ obtained by MDCT tests for normal- and high-strength self-compacting concrete mixes are compared with those obtained using the well-established three-point bending test. The procedure proposed furnishes promising results, and the $G_F$ values obtained are reliable enough for the specimen size range studied in this work.

Microproperties and Fracture Behavior of Galvannealed Coating Layer of Automobiles (자동차용 합금화 용융아연도금강판의 도금층 미소물성 및 파괴 거동)

  • Park, Chun-Dal;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.91-99
    • /
    • 2007
  • Fractures of galvannealed coating layer during actual press forming in automotive applications were observed by scanning electron microscopy in order to understand fracture mechanism. Fracture behaviors of galvannealed coating layer in extra deep drawing quality steels and high strength steels have been studied by performing the tests describing the representative plastic deformation in sheet metal forming such as uni-axial tensile test, compression test, bi-axial test and plane strain test. Growth and direction of cracks were deeply related to the plastic deformation modes and history. The material properties of galvannealed coating layer were investigated by nano-indentation test equipped with Berkovich diamond indentor for the specimens. Hardness and elastic modulus of the coating layer were higher than bared steels and that was the reason for crack of coating layer. Flat friction test and drawbead friction test were performed to observe the effect of the surface morphology on the frictional characteristics. The micro-plasto hydrodynamic lubrication were appeared and played an important role in reducing the coefficient of friction.

Effect of Latex Particle Morphology on the Film Properties of Acrylic Coatings (II);Film Forming Behavior of Model Composite Latex (라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (II);모델 복합 라텍스 입자의 필름형성 거동)

  • Ju, In-Ho;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2004
  • Film forming behavior of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. The film forming behavior was evaluated using pseudo on-line measurements of the cumulative weight loss, the UV transmittance, and the tensile fracture energy. Each stages of film formation I, II were not sensitive to the morphology of model latexes, but stage-ill was largely dependent on the morphology of model latexes. The chain mobility of polymer which composed the shell component was found to dominantly determine the behavior of film forming stage-III.

Microstructural Morphology and Bending Performance Evaluation of Molded Microcomposites of Thermotropic LCP and PA6 (액정폴리머/폴리아미드6 미시복합재료의 내부구조 및 기계적 굽힘성능 평가)

  • ;Kiyoshi Takahashi
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.53-64
    • /
    • 1999
  • Microstructural morphology and bending strengths of moulded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) have been studied as a function of epoxy fraction. Injection-moulding of a composite plaque at a temperature below the melting point of the LCP fibrils generated a multi-layered structure: the surface skin layer with thickness of $65\;-\;120{\mu\textrm{m}}$ exhibiting a transverse orientation; the sub-skin layer with an orientation in the flow direction; the core layer with arc-curved flow patterns. The plaques containing epoxy 4.8vol% exhibited superior bending strength and large fracture strain. With an increase of epoxy fraction equal to and beyond 4.8vol%, geometry of LCP domains was changed from fibrillar shape to lamella-like one, which caused a shear-mode fracture. An analysis of the bending strength of the composite plaques by using a symmetric layered model beam suggested that addition of epoxy component altered not only the microstructural geometry but also the elastic moduli and strengths of the respective layers.

  • PDF

Nanocrystallization of Cu-Based Bulk Glassy Alloys upon Annealing

  • Pengjun, Cao;Dong, Jiling;Haidong, Wu;Peigeng, Fan;Anruo, Zhou
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • The Cu-based bulk glassy alloys in Cu-Zr-Ti-Ni systems were prepared by means of copper mold casting. The Cu-based bulk glassy alloys samples were tested by X-ray diffractomer (XRD), differential scanning calorimeter, scanning electron microscopy (SEM), Instron testing machine and Vickers hardness instruments. The result indicated that the prepared Cu-Zr-Ti-Ni alloys were bulk glassy alloys. The temperature interval of supercooled liquid region (${\Delta}T_x$) was about 45.48 to 70.98 K for the Cu-Zr-Ti-Ni alloy. The Vickers hardness was up to 565 HV for the $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloy. The $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloys were annealed in order to obtain nanocrystals. The results showed that the Vickers hardness was raise up to 630 HV from 565 HV. As shown in XRD results, the amorphous alloys changed to nanocrystals, which were $Cu_8Zr_3$, $Cu_3Ti_2$ and CuZr, improved the hardness. The SEM analysis showed that the compression fractured morphology of amorphous alloys was brittle fracture, and the fracture morphology after annealing was ductile fracture. This proved that annealing of amorphous to nanocrystals can improve the plasticity and toughness of amorphous alloys.