• Title/Summary/Keyword: Fracture Mechanics

Search Result 1,210, Processing Time 0.027 seconds

Size Effect of Compressive Strength of Concrete for the Non-standard Cylindrical Specimens (비표준형 실린더 공시체에 대한 콘크리트 압축강도의 크기효과)

  • 김진근;어석홍;이성태
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.105-113
    • /
    • 1997
  • The reduction phenomena of concrete compressive strength with the size of cylinders have been very interested in, but till now the adequate. analysis technique is not fixed. Based on the existing research results. the bigger the member size is, the smaller the strengt.h is. However. the real test ~.csults reveal that the wduction rate becomes blunt and there are considerable differences between size offrct law and real results. The punposc. ofthis paper is to propose tho model equat.ion which covers the compressive strength of' cylinder specimens in case of general hight/dialnetcr ratio in terms of the size effect. he effect of maximum aggregate size on the microcrack zone was also studied, and the model equation was proposed by considering the concept of'the characteristic length. These results will also be used to predict the cornprcssivt. stxngth of various sized concrete cores sampled from existing structures.

Behaviour of Beams Without Transverse Reinforcement (전단보강근이 없는 보의 거동)

  • Cho, Soon-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.173-181
    • /
    • 1999
  • To deepen the understanding of shear behaviour in beams without transverse reinforcement, the relative importance of five contributing factors to concrete shear resistance($v_c$), which are i)flexural compression zone, ii)friction at crack faces, iii)dowel action, iv)arch action and recently identified, v)residual tensile stresses across cracks, was explained physically using two analytical methods based on the truss concept. One is called "Modified Compression Field Theory(MCFT)" considering ii) and v) explicitly, and the other "Crack Friction Truss Model(CFTM)" more dominantly ii) in determining concrete resistance. To verify their effectiveness, the predictions using MCFT and CFTM were also made for twenty KAIST beam tests($f'_c$=53.7Mpa), designated more likely to the development of the size effect law based on the fracture mechanics concept. Experimental findings with varying of a/d, longitudinal reinforcement ratios, and obtained from MCFT enabled additional explanations for some phenomena which were difficult to measure in tests. However, MCFT seemed somewhat conservative for beams with higher longitudinal reinforcement, while somewhat unsafe for beams with larger depths. More tests are necessary leading to firm conclusions in these areas.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

Study on Plugging Criteria for Thru-wall Axial Crack in Roll Transition Zone of Steam Generator Tube (증기발생기 전열관 확관천이부위 축방향 관통균열의 관막음 기준에 관한 연구)

  • Park, Myeong-Gyu;Kim, Yeong-Jong;Jeon, Jang-Hwan;Kim, Jong-Min;Park, Jun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2894-2900
    • /
    • 1996
  • The stream generator tubes represent an integral part of a major barrier against the fission product release to the environment. So, the rupture of these tubes could permit flow of reactor coolant into the secondary system and injure the safety of reactor coolant system. Therefore, if the crack was detected during In-Service Inspection of tubes the cracked tube should be evaluated by the pulgging criteria and plugged or not. In this study, the fracture mechanics evaluation is carried out on the thru-wall axial crack due to Primary Water Stress Corrosion Cracking in the roll transition aone of steam generator tube to help the assurence the integrity of tubes and estabilish the plugging criteria. Due to the Inconel which is used as tube material is more ductile than others, the plastic instability repture theory was used to calculate the critical and allowable crack length. Based on Leak Before Break concept the leak rate for the critical crack length and the allowable leak rate are compared and the safety of tubes was given.

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.

Current Status and Tasks of Contaminant Migration Experiment Using Underground Research Laboratory (지하연구시설을 이용한 오염물질 이동실험 현황 및 과제)

  • Park, Chung-Kyun;Baik, Min-Hoon;Choi, Jong-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.17-25
    • /
    • 2007
  • Research and development for disposal of contaminants including radioactive wastes in deep underground have been carried out from laboratory works. However, validation and reliability of the data from the laboratory are arguing issues because they are not obtained from real disposal situations. Underground research laboratory (URL) is not only a solution to overcome such limitations, but also a valuable facility for performance assessment as an engineering scale. However, it requires much budget, and environmental issues can give rise to social conflicts easily. Such considering points related to URL are discussed as well as current status of worldwide URLs are introduced. Furthermore study plans for solute transport in a small-scale underground research tunnel (KURT), which was authorized recently as an non-radioactive facility in Korea, also described.

Case study for Stability Estimation of Subway Twin Tunnels Using Scaled Model Tests (축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.425-438
    • /
    • 2019
  • A scaled model test was performed to evaluate the stability of subway twin tunnels excavated in the sedimentary rocks with subhorizontal bedding planes. The size of studied tunnel was 6.2 m×6.8 m and pillar width was 4 m. The anisotropic model test specimen was manufactured with the modeling materials suitable for in-situ rocks by way of dimensional analysis. Fracture and deformation behaviors of tunnels according to applied loads were investigated through the biaxial compression test. As the load was increased on the model specimen, the first crack occurred in the middle part of the pillar across twin tunnels and the gradual fractures progressed at crown and floor of twin tunnels. All the cracks in pillar were generated along the existing bedding planes so that they were found to be the main cause of the pillar failure. In addition, the test results were verified by numerical analysis on the experimental conditions using FLAC ubiquitous joint model. The distribution of plastic regions obtained from numerical analysis were in general agreement with test results, confirming the reliability of the scaled model test conducted in this study.

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

A Numerical Analysis: Effects of Hydraulic Characteristics of a Hazardous Zone on the Face Stability in Subsea Tunnelling (해저터널 시공중 문제구간의 수리적 특성이 막장의 안정성에 미치는 영향에 관한 수치해석적 연구)

  • Hong, Eun-Soo;Park, Eui-Seob;Shin, Hee-Soon;Kim, Hyung-Mok;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.366-374
    • /
    • 2008
  • Tunnelling under water table induces many geotechnical problems because of groundwater. In subsea tunneling, reduction of face stability can induce flooding in the vicinity of a fracture zone characterized by high permeability and high water pressure. In this study, the effects of high water pressure on the stability of a tunnel face in a limited zone with high permeability(hazardous zone) are analyzed. On the basis of the 'advance core' concept, the seepage force acting on a hypothetical cylinder ahead of a tunnel face is modeled. This study focuses on the hydraulic behavior of the ground ahead of the tunnel face by three-dimensional steady-state seepage analyses. The impact of the hazardous zone on the seepage force and stability of the tunnel face are simulated and analyzed. In light of the analysis results, it is estimated that the distance from the tunnel face to the exterior boundary limit, which the seepage force significantly affects the stability of the tunnel face, of a hypothetical cylinder is approximately 5 times the tunnel radii. Despite the restrictive assumptions of this study, the results are highly indicative regarding the risks of hazardous zones.

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.