• Title/Summary/Keyword: Fracture Limit

Search Result 337, Processing Time 0.025 seconds

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Prediction for Forming Limit of Tube Warm Hydroforming Based on the Ductile Fracture Criteria (연성파괴 이론을 적용한 튜브 온간액압성형의 성형한계 예측)

  • Yi, H.K.;Moon, Y.H.;Lee, J.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • Hydroformability and fracture criteria of FE analysis based on ductile fracture were investigated in warm hydroforming of A16061 tube. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed at room temperature and $200^{\circ}C$. The measured flow stresses were used as input parameters for FE analysis. The damage values were calculated by FE analysis based on ductile fracture criteria at maximum radius of free bulged tubes. Damage values were compared of hexagonal shaped hydroformed parts. As a result, the formability by critical damage value for extruded tube is lower than that of full annealed tube up to 0.5.

INVESTIGATION ON PREDICTION OF FORMING LIMIT FOR COLD UPSETTING BY UTILIZING ENERGY FRACTURE CRITERION

  • Lee Rong-Shean;Wang Shui-To;Chen Jih-Hsing
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.22-25
    • /
    • 2003
  • The forming limits are studied for cold upsetting of high strength aluminium alloy in the present paper. Different geometry ratio and frictional conditions are investigated in the forgeability test to evaluate the forming limits and also to obtain the various strain paths. The critical fracture value can be obtained by integrating along the strain path till free surface crack initiation. To predict the damage evolution of cold upsetting, the computer-aided evaluation of forming limits is obtained by using the finite-element software DEFORM-3D and the modified Cockcroft-Latham criterion. The predicted theoretical limit strains agree quite well with the experimental results.

  • PDF

J and CTOD Estimation for Homogeneous and Bi-Material Fracture Toughness Testing Specimens

  • Lee, Hyungyil;Kim, Yun-Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1079-1089
    • /
    • 2001
  • This paper proposes J and CTOD estimation schemes applied to fracture toughness testing, covering typical homogeneous and bi-material specimens. Recommendations are based on the plastic limit analysis (either slip line field or finite element limit analyses), assuming the rigid plastic material behavior. The main outcome of the present study is that the J and CTOD estimation schemes (both codified and non-codified), recommended for homogeneous specimens, can be equally used for bi-material specimens with interface cracks. The effect of yield strength mismatch in bi-material specimens on the J-integral CTOD is discussed.

  • PDF

Analysis of Forming Limit in Tube Hydroforming (튜브하이드로포밍 공정에서의 성형한계 해석)

  • 김영삼
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.134-140
    • /
    • 2000
  • Tube hydroforming is a relatively new technology compared to conventional stamping. thus there is little knowledge base that can be utilized for process and die design. To remedy this situation considerable research is now being conducted by many researchers on significant aspects of tube hydroforming technology including material selection pre-form design hydroforking process and tool design. in the tube hydroforming process we frequently experence many failure modes like wrinkling. buckling folding back and fracture under the improper forming conditions. In this paper forming limit for failure occurrence such as fracture and wrinkling is examined theoretically and the result is compared with Back's experimental result.

  • PDF

A Numerical Prediction of the Forming Limit Diagram Considering Damage Evolution (결함 성장을 고려한 수치해석적 성형한계도 예측)

  • Kim, K.T.;Song, J.H.;Lee, G.A.;Lee, H.W.;Kim, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.596-600
    • /
    • 2009
  • Finite element simulation is an alternative method to practically find the forming limit diagram(FLD). In this paper, the novel fracture criterion is utilized to predict the FLD in conjunction with finite element analysis for sheet forming. The principal scheme of the fracture criterion in this paper is that growth of the micro voids leads up to fracture in the viewpoint of micro-mechanics. The numerical FLD is verified by results of the out-of plane stretching test using hemispherical punch. The verification is also conducted about two types of material. These results are in good accord with the experimental results. Especially, the proposed scheme is appropriate to predict FLDs for a restricted material with low ductility after the instability point or ultimate tensile strength.

Evaluation of RPV according to alternative fracture toughness requirements

  • Lee, Sin-Ae;Lee, Sang-Hwan;Chang, Yoon-Suk
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1271-1286
    • /
    • 2015
  • Recently, US NRC revised fracture toughness requirements as 10CFR50.61a to reduce the conservatism of 10CFR50.61. However, unlike previous studies relating to the initial regulation, structural integrity evaluations based on the alternative regulation are not sufficient. In the present study, PTS and P-T limit curve evaluations were carried out by using both regulations and resulting data were compared. With regard to the PTS evaluation, the results obtained from the alternative requirements were satisfied with the criterion whereas those obtained from the initial requirements did not meet the criterion. Also, with regard to the P-T limit curve evaluation, operating margin by 10CFR50.61a was greater than that by 10CFR50.61.

A fracture mechanics evaluation on the fatigue crack propagation at spot welded aluminum joint in passenger car body (스폿용접된 자동차 차체용 알루미늄 박판의 피로균열진전의 파괴역학적 평가)

  • 박인덕;남기우;강석봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 1997
  • The fatigue crack propagation properties and fatigue life of two kinds of Al body panel for automobile were examined experimentally by using the plate specimen and the single spot welding specimen. The fatigue limit of spot welding specimens was lower than that of a plate specimen. The fatigue limit was similar in two kinds of spot welding specimen. The shape and size of crack propagation were observed and measured on beach mark of fracture surface. The crack propagation of surface crack specimen showed almost same tendency to that of a thick plate as almost semi-elliptical. In spot welding specimen, the fatigue crack occurred in inside surface of nugget area was almost semi-elliptical. The crack growth rate can be explained using equation of stress intensity factors.

  • PDF

A plane strain punch stretching test for evaluating stamping formability (평면변형장출실험을 이용한 스탬핑 성형성 평가)

  • 김영석;남재복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.121-129
    • /
    • 1993
  • Plane strain punch stretching test (PSST) was developed to evaluate stamping formability of sheet materials. In this test, the rectangular specimen of sheet material is uniformly stretched up to fracture by raising a specially designed punch to certainly assure plane strain stretching deformation along the longitudinal direction of the specimen. The stamping formability was evaluated by limit punch height(LPH) in plane strain punch stretching test compared to limit dome height(LDH) in hemispherical punch stretching test. LPH-value in PSST well ranks the stamping formability of various material and correlates with press performance. Moreover by using ultrasonic thickness gauge the plane strain intercept-limit plane strain(FLCo)-in forming limit curve can be accurately determined from thickness measurement around the fracture area. The FLCo derived from thickness measurement well correlates with the results from circle grid analysis for the deformed circle grid marked on the surface of the specimen.

  • PDF

MECHANICAL PROPERTIES OF QUARTZ FIBER POST (Quartz fiber post의 물리적 특성에 관한 연구)

  • Lee Young-Soo;Kang Ik-Je
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.68-78
    • /
    • 2002
  • The post core system has been used for reconstructon of severely damaged crown by caries or trauma. But problems such as crown exfoliation, post core fracture and root fracture have been reported. Ideal mechanical properies of the post require high fracture strength, high elastic limit and high resistance against fatigue and corrosion Modulus of elasticity of the post should be similar with that of dentine. Low hardness is also required for the convenience of post removal in failure. Furthermore, the post itself must be translucent for the esthetical purpose. Several types of the post have been developed to satisfy the criteria above mentioned. The purpose of this study was to find out the mechanical properties of quartz fiber post by comparing with those of gold post and zirconia post. The results of this study were as follows : 1. Maximal fracture strength and stiffness of quartz fiber post were similar with those of gold post and zirconia post. 2. Young's modulus and hardness of quartz fiber post were lower than those of gold post and zirconia post. Mechanical property of quartz fiber post against post fracture was similar with that of gold post and zirconia post. Mechanical property of quartz fiber post against root fracture was higher than that of gold post and zirconia post. Quartz fiber post could be removed easily due to low hardness.