• Title/Summary/Keyword: Fracture Elongation

Search Result 191, Processing Time 0.023 seconds

Forming Characteristics of Laser Welded Tailored Blanks I : Tensile Deformation Characteristics. (레이저 용접 테일러드 블랭크의 기본 성형특성 I : 인장변형 특성)

  • Park, Gi-Cheol;Han, Su-Sik;Kim, Gwang-Seon;Gwon, O-Jun
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • In order to analyze the tensile deformation characteristics of laser welded tailored blanks. laser welded blanks of different thikness and strength combinations were prepared and tensile tests were done. The tensile elongation along the direction perpendicular to weld line of laser welded blanks was reduced as increasing the deformation restraining force (strength X thicknes) ratio between two welded sheets and fracture occurred at weaker side of base sheets if void ration of welded sheets and fracture occurred at weaker side of base sheets if void ratio of weld section was less than 45% The tensile elongation along weld line reached above 90% of the elongation of base material if welding was done perfectly. Total elongation along the direction perpendicular to weld line was able to be predicted by force equilibrium and power law behavior of base sheets and it was related with the deformation of stronger sheet and formability of weaker side.

  • PDF

Creep-Rupture and Fatigue Properties of Transient Liquid Phase Bonded Joints of Ni-Base Single Crystal Superalloy (액상확산접합한 Ni기 단결정 초내열합금의 크리프 파단 및 피로특성)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.82-87
    • /
    • 2001
  • The creep-rupture and low cycle fatigue properties of transient liquid phase bonded joints of Ni-base single crystal superalloy, CMSX-2 was investigated using MBF-80 insert metal. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. CMSX-2 was bonded at 1523K for 1.8ks in vacuum, optimum bonding condition. The creep rupture strength and rupture lives of the joints were the almost identical to ones of the base metal. SEM observation of the fracture surfaces of joints after creep rupture test revealed that the fracture surfaces classified three types of region, ductile fracture surface, cleavage fracture surface and interfacial fracture surface. The low cycle fatigue properties of the joints were also the same level as those of base metal. The elongation and reduction of area values of joints were comparable to those of base metal while fell down on creep rupture condition of high temperature.

  • PDF

Effects of Refining and Kneading of Kraft Pulp Fibers on Elongation and Fracture Toughness of Paper (크라프트 펄프 섬유의 다단 고해와 니딩 처리에 따른 종이 신장률 및 파괴인성의 변화)

  • Lim, Jong-Hyck;Chae, Hee-Jae;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.39-44
    • /
    • 2010
  • To increase the fracture toughness of paper made of Sw-BKP, refining and kneading conditions were analyzed. Curl and kink was known to increase the strain at break and the fracture touhness. Sequence of multiple stage beating, beating load and kneading were compared. When we applied a kneading treatment using a kneader at the final step, the most of the fiber transformation such as curl and kink occurred, the more the bulk and air-permeability improved. Physical strength and TEA(tensile energy absorption) were increased higher when kneading treatment before refining than only refining treatment was performed. TEA was increased because of higher elongation. It was found that the highest fracture toughness was obtained when applying the kneading treatment to the fibers in the pre-treatment step rather than in the middle step of beating or in the final step of beating.

Effects of Hf Addition on Microstructure and Hot Workability of Fe-30at.%A1-5at.%Cr Alloy (Hf가 첨가된 Fe-30at.%A1-5at.%Cr 합금의 미세조직 및 열간압연가공 특성)

  • Yoon, Kye-Lim;Lee, Doh-Jae;Baek, Dae-Hwa;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.336-342
    • /
    • 2001
  • This study was carried out to examine the effects of adding 0.3at.%Hf in Fe-30at.%Al-5at.%Cr alloy on the variation of microstructures and hot workability. The effect of hot rolling on mechanical properties was estimated by measuring the elongation and tensile strength after rolling at 800 and 1000 respectively. Microstructure of Fe-30at.%Al-5at.%Cr alloy was consisted of large equiaxed grains and it was changed to quasi-equiaxed or columnar structures by adding 0.3at.%Hf to Fe-30at.%Al-5at.%Cr alloy. Every specimens showed a decreased tensile strength after hot rolling compared to that of before rolling. The elongation was increased by hot rolling. Remarkable changes in elongation by hot rollong was observed such as from 1.4% to 4.5% elongation at the specimen of 0.3at.%Hf added to Fe-30at.%Al-5at.%Cr. Fe-30at.%Al-5at.%Cr alloy showed typical cleavage fracture on tensile failure and hot rolling has negligible effects on fracture mode in this alloy. However at the alloy containing Hf fracture mode was changed by hot rolling from intergranular to mixed intergranular and transgranular fracture mode.

  • PDF

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF

Effect of Austempering Temperature on the Fracture Characteristics in Austempered Ductile Cast Iron (오스템퍼드 구상흑연주철의 파괴특성에 미치는 오스템퍼링 온도의 영향에 관한 연구)

  • Park, Jun-Hoon;Gang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.146-155
    • /
    • 1995
  • This study was performed to investigate the effect of austempering temperature on the mechanical properties and fracture characteristics of the ductile cast iron with Cu, Mo and Cu, Mo, Ni. The results obtained from this study are summarized as follows; Microstructures of Cu-Mo and Cu-Mo-Ni ductile cast iron by austempering were obtained low bainite with some martensite at $250^{\circ}C$, mixture structure of upper and low bainite obtained at $300^{\circ}C$ and upper bainite obtained at $350^{\circ}C$. Tensile, impact and fracture toughness properties were remarkably controlled by retained austenite. With increasing austempering temperature, tensile and yield strength, hardness decreased, while the elongation and impact absorption energy, fracture toughness increased. With adding Ni, tensile and yield strength increased and elongation, facture toughness and impact absorption energy decreased. Retained austenite increased with increasing austempering temperature and the fracture surface were shown mixture structure of fibrous and dimple.

  • PDF

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형 능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.59-68
    • /
    • 2010
  • In the present study, the deformation capacity of slender shear walls with thin web subject to inelastic deformation after flexural yielding was studied. Web-crushing and rebar-fracture were considered as the governing failure mechanisms of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

The Effect of the cooling Rate on Fracture Toughness and Fatigue Crack Properties of Al-Si-Mg(A356) Alloy Castings (Al-Si-Mg(A356) 주조합금의 파괴인성 및 피로균열전파에 미치는 응고속도의 영향)

  • Kim, Chang-Joo;Kim, Chung-Keun
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1991
  • Aluminium alloy castings, which can be not only manufactured in larger geometrically complex shapes, but also show good mechanical properties in addition to light weight, have kept their potential use as structures in the field of automotives, industrial machines and aircrafts. The variations of eutectic Si size a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The cooling curves with the solidification rate between $1.4^{\circ}C\;/min$ and $19.1^{\circ}C\;/min$ were obtained. With the increase of solidification rate, DAS, eutectic Si size and grain size were all decreased, which enhanced the mechanical properties. The tensile strength and yield strength were the most greatly influenced by DAS, and the elongation and impact value by eutectic Si size.

  • PDF

A Study of Dynamic Deformation Behaviors of SCM415 steel with the Change of Ferritic Grain Size (SCM415강의 동적 변형거동에 미치는 페라이트 결정립크기 변화에 관한 연구)

  • Kim, Heon-Joo;Park, Moo-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.1
    • /
    • pp.22-30
    • /
    • 2007
  • Effects of ferrite grain size on static and dynamic deformation behaviors of SCM415 stels were investigated in this study. Dynamic torsional test was conducted using torsional Kolsky bar with the strain rate of $1.6{\times}10^3/s$. Specimens with three different grain size of ferrite, $4.6{\mu}m$, $11{\mu}m$, $35.5{\mu}m$ were used. Dimple fracture mode of the dynamic test specimens showed adiabatic shear bands on the beneath of fracture surface. Increased uniform elongation and decreased non-uniform elongation appeared as grain size of ferrite decreased in dynamic torsional test. However, shear strength was independent on grain size of ferrite.