• Title/Summary/Keyword: Fracture Criterion

Search Result 341, Processing Time 0.015 seconds

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.