• Title/Summary/Keyword: Fracture Aperture

Search Result 70, Processing Time 0.03 seconds

A STUDY OF HYDRAULIC PROPERTIES IN A SINGLE FRACTURE WITH IN-PLANE HETEROGENEITY: AN EVALUATION USING OPTICAL MEASUREMENTS OF A TRANSPARENT REPLICA

  • Sawada, Atsushi;Sato, Hisashi
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Experimental examinations for evaluating fracutres were conducted by using transparent replicas of a single fracture in order to obtain the fracture data to contribute to the methodlogy on how to improve the definitaion of representative parameter values used for a parallel plate fracture model. Quantitative aperture distribution and quantitative tracer concentration data at each point in time were obtained by measuring the attenuation of transmitted light through the fracture in high spatial resolution. the representative aperture values evaluated from the multiple different measurement methods, such as arithmetic mean of aperture distribution measured by the optical method, transport aperture evaluated from the tracer test, and average aperture evaluated from the fracture void volume measurement converged to a unique value that indicates the accuracy of this experimental study. The aperture data was employed for verifying the numerical simulation under the assuption of Local Cubic Law and showed that the calculated flow rate through the fracture is 10%-100% larger than hydraulic test results. The quantitative tracer concentration data is also very valuable for validating existing numerical code for advection dispersion transport in-plane heterogeneous fractures.

3D imaging of fracture aperture density distribution for the design and assessment of grouting works (절리 암반내 그라우팅 설계 및 성과 판단을 위한 절리틈새 밀도 분포의 3차원 영상화 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.113-120
    • /
    • 2004
  • Grouting works in fractured rocks have been performed to reinforce the underground and/or to block ground water flow at the foundation site of dam, bridge and so on. For the efficient grouting design, a prior knowledge of the fracture pattern of underground area to be grouted in very important. For the practical use, aperture sizes of open fractures that will be filled up with grouting materials will be kind of valuable information. Thus, the main purpose of this study is to develop a new technique (so called "GenFT") enable to form a three dimensional image of fracture aperture density distribution from Televiewer data. For this, the study is to focus on dealing with (1) estimating aperture size of each fracture automatically from Televiewer time image, (2) mapping extension of fracture planes on a given section, (3) evaluating aperture density distribution on the section by using both aperture size and fracture face mapping result of each fracture, (4) developing an algorithm that can transfer the previous results to any arbitrary(vertical and/or horizontal) section around the borehole. Since 3D imaging means "a strategy used to form an image of arbitrarily subdivided 2D sections with aperture density distribution", it will help avoid ambiguities of fracture pattern interpretation and hence will be of practical use not only for the design and assessment of grouting works but also for various engineering works. Examples of fields experiments are illustrated. It would seem that this technique might lead to reflecting future trend in underground survey.

  • PDF

Evaluation of fracture density distribution for the design of grouting works in fractured rocks (그라우팅 설계를 위한 절리밀도분포 산출법 개발)

  • 김중열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.627-634
    • /
    • 2002
  • To facilitate a drilling plan for grouting in fractured rock, an algorithm of practical use associated with a new term “fracture density distribution”or“fracture tomogram”is developed. It is well known that Televiewer data(amplitude and traveltime image) provide detailed information about not only dip and dip direction of each fracture but also its aperture size estimated by an appropriate evaluation algorithm. A selected plane section of medium around a borehole or the cross section between two boreholes is discretized into a two dimensional grid of cells(rectangular elements). As each elongated(straight) fracture passes through the cells, the corresponding aperture size value is successively summed up in each cell, depending on the fracture length segment. In this, the fracture lines can be determined by intersecting of each fracture plane with the selected plane section. If the fracture line does not pass through a particular grid element, the segment length is set to zero. The final value(aperture size value of each cell) derived from all the detected fractures constitutes the fracture density distribution of the selected plane section, Field examples are illustrated, which will prove the benefit of the suggested algorithm for several kinds of grouting works.

  • PDF

MODELING THE HYDRAULIC CHARACTERISTICS OF A FRACTURED ROCK MASS WITH CORRELATED FRACTURE LENGTH AND APERTURE: APPLICATION IN THE UNDERGROUND RESEARCH TUNNEL AT KAERI

  • Bang, Sang-Hyuk;Jeon, Seok-Won;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.639-652
    • /
    • 2012
  • A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

A Study on Validation of Variable Aperture Channel Model: Migration Experiments of Conservative Tracer in Parallel and Wedge-Shaped Fracture

  • Keum, D.K.;Hahn, P.S.;Vandergraaf, T.T.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.245-261
    • /
    • 1998
  • In order to validate the variable aperture channel model that can deal with the non-uniform How rate in flow domain, migration experiments of conservative tracer were performed in two artificial fractures, a parallel and a wedge-shaped fracture. These different fracture shapes were designed to give different flow pattern. The fractures were made from a transparent acrylic plastic plate and a granite slab with dimensions of 10 $\times$ 61 $\times$ 61 cm. Uranine (Fluorescein sodium salt) was used as a conservative tracer. The volumetric flow rates of uranine feed solution were 30 mL/ hr, giving a mean residence time in the fracture of approximately 24 hours for the parallel fracture and 34 hours for the wedge-shaped fracture. The migration plumes of uranine were photographed to obtain profiles in space and time for movement of a tracer in fractures. The photographed migration plume was greatly affected by the geometric shape of fractures. The variable aperture channel model could have predicted the experimental results for the parallel fracture with a large accuracy. It is expected that the variable aperture channel model would be effective to predict the transport of the contaminant, especially, with the flow rate variation in a fracture.

  • PDF

A NUMERICAL STUDY ON CHARACTERISTICS OF FLUID FLOW AND SOLUTE TRANSPORT IN A SELF-AFFINE VARIABLE-APERTURE FRACTURE UNDER NORMAL COMPLIANCE EFFECT

  • JEONG WOOCHANG;HWANG MANHA;KO ICKHWAN;SONG JAIWOO
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.49-61
    • /
    • 2005
  • This paper presents the numerical study to examine characteristics of fluid flow and solute transport in a rough fracture subject to effective normal stresses. The aperture distribution is generated by using the self-affine fractal model. In order to represent a nonlinear relationship between the supported normal stress and the fracture aperture, we combine a simple mechanical model with the local flow model. The solute transport is simulated using the random walk particle following algorithm. Results of numerical simulations show that the flow is significantly affected by the geometry of aperture distribution varying with the effective normal stress level while it is slightly affected by the fractal dimension that determines the degree of the fracture surface roughness. However, solute transport is influenced by the effective normal stress as well as the fracture surface roughness.

  • PDF

The homogenization analysis for permeability coefficients by fracture aperture variations (균질화 해석법을 이용한 단열 간극변화에 따른 투수계수 해석)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.47-60
    • /
    • 2004
  • The permeability coefficients were calculated by the homogenization analysis method with sufficient consideration of fracture geometry dependent on aperture change. According to the results of aperture measurements using a confocal laser scanning microscope, apertures on each measuring point display different magnitudes, indicating that fracture walls can not be assumed as parallel feature. After construction of fracture model based on the aperture values measured on each pressure level, the homogenization analysis was conducted to compute permeability coefficients. The calculated permeability coefficients distribute in the ranges of $10^{-1}~10^{-3}cm/sec$. Most of the specimens show decreasing permeability coefficients with the increase of the applied pressure. However, the decreasing rates of permeability coefficients do not show a constant trend on each pressure level. This phenomenon is well matched to the observation results of Chae et al. (2003). It proves that aperture change strongly influences on permeability characteristics. Three sections of each specimen have all different values of permeability coefficient. It suggests that the variation of permeability coefficient depends sensitively on aperture magnitudes and characteristics of fracture geometry. It is very important to consider accurate fracture geometries for analysis of permeability characteristics in rock fractures bearing different aperture distribution. Therefore, it needs to consider sufficiently the fracture geometries for calculating the permeability coefficients of fractures.

Effects of Aperture Densitv Distribution on the Flow Through a Rock Fracture with Line-Source and Line-Collection

  • Park, Chung-Kyun;Hahn, Pil-So
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.485-495
    • /
    • 1998
  • Migration characteristics of tracers in a rock fracture in a case of line-source and line-collection was studied. The fracture plane was discretized into a square mesh to which variable apertures were assigned. The spatially varying apertures of a fracture were generated using a geostatistical method, based on a given aperture probability density distribution and a specified spatial correlation length. The flow potential and pressure at each node were computed. Calculations showed that fluid flow occurs predominantly through a few preferred paths. Hence, the large range of apertures in the fracture gives rise to flow channeling. The solute transport was calculated using a particle tracking method. The migration plumes of tracer between injection line and withdrawal line are displayed in contour plots. The elution curves are shown to be controlled by the aperture density distribution and to be insensitive to statistical realization and spatial correlation length.

  • PDF

The Changes of Aperture Variation and Hydraulic Conductivity for Compression Variability (압력에 따른 균열 간극변화와 수리전도도 변화 관찰)

  • 채병곤;이철우;정교철;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2003
  • In order to measure aperture variation dependent on normal stress and to characterize on relationship between aperture variation and hydraulic conductivity this study measured apertures of rock fractures under a high resolution confocal laser scanning microscope (CLSM) with application of five stages of uniaxial normal stresses. From this method the response of aperture can be continuously characterized on one specimen by different loads of normal stress. The results of measurements showed a rough geometry of fracture bearing non-uniform aperture. They also revealed different values of aperture variations according to the load stages on each position along a fracture due to the fracture roughness. Laboratory permeability tests were also conducted to evaluate the changes of permeability coefficients related to the aperture variations by different loads. The results of permeability tests revealed that the hydraulic conductivity was not reduced at a fixed rate with increase of normal load. Moreover, the rates of aperture variations did not match to those of hydraulic conductivity. The hydraulic conductivity calculated in this study did not follow the cubic law, representing that the parallel plate model is not suitable to express the fracture geometry corresponding to the results of aperture measurements under the CLSM.

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: II. Verification of Numerical Model and Field Application (지하 LPG 저아공동에 인접한 단일절리에서의 이상유체거동해석: II. 수치모형의 검증 및 적용)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.449-458
    • /
    • 2001
  • In order to verify the numerical model, which was developed to simulate the behavior of the two-phase fluid flow in a single fracture, the characteristic equation of relative permeability was incorporated into the developed numerical model, and the computed results were compared with the experimental results of the model test. As results of the sensitivity analysis on the roughness and the aperture size of fracture, the gas velocity was inversely proportional to the fracture roughness, and not proportional to the square of aperture size which is usually observed in single phase flow in a single fracture. The numerical model was applied to the underground LPG storage terminal in order to check the field applicability. The simultaneous flow of water and gas in accordance with the operation pressures in a single fracture near cavern was simulated by the model. It was shown that the leaked gas was able to be controlled in a single fracture neither by the pressure of operation nor by that of groundwater in case the fracture became smoother in roughness and smaller in aperture size.

  • PDF