• Title/Summary/Keyword: Fractionated radiosurgery

Search Result 24, Processing Time 0.028 seconds

Efficacy and Safety of Fractionated Stereotactic Radiosurgery for Large Brain Metastases

  • Jeong, Won Joo;Park, Jae Hong;Lee, Eun Jung;Kim, Jeong Hoon;Kim, Chang Jin;Cho, Young Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.217-224
    • /
    • 2015
  • Objective : To investigate the efficacy and safety of fractionated stereotactic radiosurgery for large brain metastases (BMs). Methods : Between June 2011 and December 2013, a total of 38 large BMs >3.0 cm in 37 patients were treated with fractionated Cyberknife radiosurgery. These patients comprised 16 men (43.2%) and 21 women, with a median age of 60 years (range, 38-75 years). BMs originated from the lung (n=19, 51.4%), the gastrointestinal tract (n=10, 27.0%), the breast (n=5, 13.5%), and other tissues (n=3, 8.1%). The median tumor volume was 17.6 cc (range, 9.4-49.6 cc). For Cyberknife treatment, a median peripheral dose of 35 Gy (range, 30-41 Gy) was delivered in 3 to 5 fractions. Results : With a median follow-up of 10 months (range, 1-37 months), the crude local tumor control (LTC) rate was 86.8% and the estimated LTC rates at 12 and 24 months were 87.0% and 65.2%, respectively. The median overall survival (OS) and progression-free survival (PFS) rates were 16 and 11 months, respectively. The estimated OS and PFS rates at 6, 12, and 18 months were 81.1% and 65.5%, 56.8% and 44.9%, and 40.7% and 25.7%, respectively. Patient performance status and preoperative focal neurologic deficits improved in 20 of 35 (57.1%) and 12 of 17 patients (70.6%), respectively. Radiation necrosis with a toxicity grade of 2 or 3 occurred in 6 lesions (15.8%). Conclusion : These results suggest a promising role of fractionated stereotactic radiosurgery in treating large BMs in terms of both efficacy and safety.

Stereotactic Radiosurgery

  • Chung, Hyun-Tai;Lee, Dong-Joon
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Stereotactic radiosurgery is one of the most sophisticated forms of modern advanced radiation therapy. Unlike conventional fractionated radiotherapy, stereotactic radiosurgery uses a high dose of radiation with steep gradient precisely delivered to target lesions. Lars Leksell presented the principle of radiosurgery in 1951. Gamma Knife® (GK) is the first radiosurgery device used in clinics, and the first patient was treated in the winter of 1967. The first GK unit had 179 cobalt 60 sources distributed on a hemispherical surface. A patient could move only in a single direction. Treatment planning was performed manually and took more than a day. The latest model, Gamma Knife® IconTM, shares the same principle but has many new dazzling characteristics. In this article, first, a brief history of radiosurgery was described. Then, the physical properties of modern radiosurgery machines and physicists' endeavors to assure the quality of radiosurgery were described. Intrinsic characteristics of modern radiosurgery devices such as small fields, steep dose distribution producing sharp penumbra, and multi-directionality of the beam were reviewed together with the techniques to assess the accuracy of these devices. The reference conditions and principles of GK dosimetry given in the most recent international standard protocol, International Atomic Energy Agency TRS 483, were shortly reviewed, and several points needing careful revisions were highlighted. Understanding the principles and physics of radiosurgery will be helpful for modern medical physicists.

Preliminary Report of Multisession Gamma Knife Radiosurgery for Benign Perioptic Lesions: Visual Outcome in 22 Patients

  • Kim, Jong-Won;Im, Yong-Seok;Nam, Do-Hyun;Park, Kwan;Kim, Jong-Hyun;Lee, Jung-Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.2
    • /
    • pp.67-71
    • /
    • 2008
  • Objective : Radiosurgery may be contraindicated for lesions adjacent to the optic pathways because of the substantial risk of visual complication. Multisession radiosurgery has been tried as a compromise between single session radiosurgery and fractionated radiotherapy. The purpose of this study is to evaluate the outcomes of multisession gamma knife radiosurgery (GKRS) in 22 patients with perioptic lesions of benign pathology. Methods : In all 22 cases, the lesions were within 1 mm of the optic apparatus and were therefore not considered suitable for single session radiosurgery. Radiation was delivered in 3 to 4 fractions with a median cumulated marginal dose of 20 Gy (range, 15-20 Gy). Results : During a mean follow-up of 29 months (range, 14-44 months), tumor control was achieved in 21 patients. Visual function improved in 7 patients, remained unchanged in 14 patients, and deteriorated in 1 patient with tumor progression. No other complication was observed. Conclusion : This preliminary result supports the idea that multisession GKRS may be an effective and safe alternative for treatment in perioptic lesions that are unsuitable for single session radiosurgery.

Fractionated Stereotactic Radiosurgery for Brain Metastases Using the Novalis Tx® System

  • Lim, Tae Kyoo;Kim, Woo Kyung;Yoo, Chan Jong;Kim, Eun Young;Kim, Myeong Jin;Yee, Gi Taek
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.4
    • /
    • pp.525-529
    • /
    • 2018
  • Objective : To evaluate the efficacy of fractionated stereotactic radiosurgery (FSRS) performed using the Novalis $Tx^{(R)}$ system (BrainLAB AG, Feldkirchen, Germany; Varian Medical Systems, Palo Alto, CA, USA) for brain metastases. Methods : Between March 2013 and July 2016, 23 brain metastases patients were admitted at a single institute. Twenty-nine lesions too large for single session stereotactic radiosurgery or located in the vicinity of eloquent structures were treated by FSRS. Based on the results obtained, we reviewed the efficacy and toxicity of FSRS for the treatment of brain metastases. Results : The most common lesion origin was lung (55%) followed by breast (21%). Median overall survival was 10.0 months (95% confidence interval [CI], 4.9-15.0), and median progression-free survival was 10.0 months (95% CI, 2.1-13.9). Overall survival rates at 1 and 2 years were 58.6% and 36.0%, respectively. Local recurrence and neurological complications affecting morbidity each occurred in two cases. Conclusion : FSRS using the $Novalis-Tx^{(R)}$ system would appear to be an effective, safe noninvasive treatment modality for large and eloquently situated brain metastases. Further investigation is required on a larger number of patients.

THREE-DIMENSIONAL VERIFICATION OF INTRACRANIAL TARGET POINT DEVIATION USING MRI-BASED POLYMER-GEL DOSIMETRY FOR CONVENTIONAL AND FRACTIONATED STEREOTACTIC RADIOSURGERY

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.107-118
    • /
    • 2011
  • Conventional (SRS) and fractionated (FSRS) stereotactic radiosurgery necessarily require stringent overall target point accuracy and precision. We determine three-dimensional intracranial target point deviations (TPDs) in a whole treatment procedure using magnetic resonance image (MRI)-based polymer-gel dosimetry, and suggest a technique for overall system tests. TPDs were measured using a custom-made head phantom and gel dosimetry. We calculated TPDs using a treatment planning system. Then, we compared TPDs using mid bi-plane and three-dimensional volume methods with spherical and elliptical targets to determine their inherent analysis errors; finally, we analyzed regional TPDs using the latter method. Average and maximum additive errors for ellipses were 0.62 and 0.69 mm, respectively. Total displacements were 0.92 ${\pm}$ 0.25 and 0.77 ${\pm}$ 0.15 mm for virtual SRS and FSRS, respectively. Average TPDtotal at peripheral regions was greater than that at central regions for both. Overall system accuracy was similar to that reported previously. Our technique could be used as an overall system accuracy test that considers the real radiation field shape.

Clinical Outcomes of Intracranial Nonvestibular Schwannomas Treated with Linac-Based Stereotactic Radiosurgery and Radiotherapy

  • Puataweepong, Putipun;Dhanachai, Mantana;Hansasuta, Ake;Saetia, Kriangsak;Dangprasert, Somjai;Sitathanee, Chomporn;Yongvithisatid, Pornpan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3271-3276
    • /
    • 2016
  • Background: Intracranial nonvestibular schwannomas arising from various cranial nerves excluding CN VIII are uncommon. Recently, stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) have been widely reported as effective treatment modalities for nonvestibular schwannomas. The purpose of this study was to study the long term clinical outcome for nonvestibular schwannomas treated with both X-Knife and CyberKnife (CK) radiosurgery at one institution. Materials and Methods: From 2004 to 2013, fifty-two nonvestibular schwannoma patients were included in this study, 33 patients (63%) were treated with CK, and 19 (37%) were treated with X-Knife. The majority of the tumors were jugular foramen schwannomas (38%) and trigeminal schwannomas (27%). HSRT was given for 45 patients (86%), whereas CSRT was for 6 (12%) and SRS for 1 (2%). Results: The median pretreatment volume was $9.4cm^3$ (range, $0.57-52cm^3$). With the median follow up time of 36 months (range, 3-135), the 3 and 5 year progression free survival was 94 % and 88%, respectively. Tumor size was decreased in 13 (25%), stable in 29 (56%), and increased in 10 (19%). Among the latter, 3 (30%) required additional treatment because of neurologic deterioration. No patient was found to develop any new cranial nerve deficit after SRS/SRT. Conclusions: These data confirmed that SRS/SRT provide high tumor control rates with low complications. Large volume tumors and cystic expansion after radiation should be carefully followed up with neurological examination and MRI, because it may frequently cause neurological deterioration requiring further surgery.

Avoiding a Collision in Gamma Knife Radiosurgery : A Modified Mask Fixation Method

  • Hyeong Cheol Moon;Doheui Lee;Byung Jun Min;Young Gyu Kim;Yun-Sik Dho
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.476-481
    • /
    • 2023
  • Objective : The latest version of the Leksell Gamma Knife IconTM allows for mask- and frame-based fixation. Although mask fixation provides fractionated treatment and immobilization using a noninvasive method, it is not free from collision. The authors investigated the collision problem with a modified mask fixation method. Methods : This study presents a case of two meningiomas in the frontal area, where a collision occurs in the occipital area. A modified mask fixation method was introduced to avoid the collision : first, the edges of the head cushion were cut off and polystyrene beads with a diameter of approximately 5 cm were removed. Next, the head cushion was sealed using a stapler. Finally, the head cushion was flattened in the adapter. We compared the shot coordinates, 3-dimensional (3D) error, clearance distance, and vertical depth of the head cushion between the initial and modified mask fixations. Results : When comparing the initial and modified mask fixations, the difference in the shot coordinates was +10.5 mm along the y-axis, the difference in the 3D error was approximately 18 mm, and the difference in clearance was -10.2 mm. The head cushion was approximately 8 mm deeper in the modified mask fixation. Conclusion : Based on these findings, we recommend a modified mask fixation method for gamma knife radiosurgery using ICON with a collision.

Confirmation of the Dose Distribution by Stereotactic Radiosurgery Technique with a Multi-purpose Phantom (다용도 팬톰에서 정위방사선수술기법의 선량 정확도 확인)

  • Yoo Hyung Jun;Kim Il Han;Ha Sung Whan;Park Charn Il;Hur Sun Nyung;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.179-185
    • /
    • 2002
  • Purpose : For the purpose of quality assurance of self-developed stereotactic radiosurgery system, a multi-purpose phantom was fabricated, and accuracy of radiation dose distribution during radiosurgery was measured using this phantom. Materials and Methods : A farmer chamber, a 0.125 cc ion chamber and a diode detector were used for the dosimetry. Six MV x-ray from a linear accelerator (CL2100C, Varian) with stereotactic radiosurgery technique (Green Knife) was used, and multi-purpose phantom was attached to a stereotactic frame (Fisher type). Dosimetry was done by combinations of locations of the detectors in the phantom, fixed or arc beams, gantry angles $(20^{\circ}\~100^{\circ})$, and size of the circular tertiary collimators (inner diameters of $10\~40\;mm$). Results : The measurement error was less than $0.5\%$ by Farmer chamber, $0.5\%$ for 0.125 cc ion chamber, and less than $2\%$ for diode detector for the fixed beam, single arc beam, and 5-arc beam setup. Conclusion : We confirmed the accuracy of dose distribution with the radiosurgery system developed in our institute and the data from this study would be able to be effectively used for the improvement of quality assurance of stereotactic radiosurgery or fractionated stereotactic radiotherapy system.

Maximum diameter versus volumetric assessment for the response evaluation of vestibular schwannomas receiving stereotactic radiotherapy

  • Choi, Youngmin;Kim, Sungmin;Kwak, Dong-Won;Lee, Hyung-Sik;Kang, Myung-Koo;Lee, Dong-Kun;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: To explore the feasibility of maximum diameter as a response assessment method for vestibular schwannomas (VS) after stereotactic radiosurgery or fractionated stereotactic radiotherapy (RT), we analyzed the concordance of RT responses between maximum diameters and volumetric measurements. Materials and Methods: Forty-two patients receiving curative stereotactic radiosurgery or fractionated stereotactic RT for VS were analyzed retrospectively. Twelve patients were excluded: 4 did not receive follow-up magnetic resonance imaging (MRI) scans and 8 had initial MRI scans with a slice thickness >3 mm. The maximum diameter, tumor volume (TV), and enhanced tumor volume (ETV) were measured in each MRI study. The percent change after RT was evaluated according to the measurement methods and their concordances were calculated with the Pearson correlation. The response classifications were determined by the assessment modalities, and their agreement was analyzed with Cohen kappa statistics. Results: Median follow-up was 31.0 months (range, 3.5 to 86.5 months), and 90 follow-up MRI studies were analyzed. The percent change of maximum diameter correlated strongly with TV and ETV (r(p) = 0.85, 0.63, p = 0.000, respectively). Concordance of responses between the Response Evaluation Criteria in Solid Tumors (RECIST) using the maximum diameters and either TV or ETV were moderate (kappa = 0.58; 95% confidence interval, 0.32-0.85) or fair (kappa = 0.32; 95% confidence interval, 0.05-0.59), respectively. Conclusions: The percent changes in maximum diameter and the responses in RECIST were significantly concordant with those in the volumetric measurements. Therefore, the maximum diameters can be used for the response evaluation of VS following stereotactic RT.

Isocenter Reproducibility with Mask Fixation System in Stereotactic Radiosurgery (정위 마스크 시스템을 사용한 방사선수술시 회전중심점의 재현성)

  • 이동준;손문준;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.135-138
    • /
    • 2002
  • Fractionated stereotactic radiosurguy (FSRS) requires precise and reproducible patient set up. For these reasons non-invasive mask fixation methods have been used in Linac based FSRS. In this study, we measured and assessed the isocenter reproducibility using a commercial head mask fixation system based on thermoplastic materials. For the verification and the measurement of isocenter deviation a special acrylic brain phantom was designed. The designed phantom has 22 vertical rods and each rod has different lengths. At the end of the 8 rods, the monochromic film is attached and irradiated due to planned target position. Deviations of isocenter were measured separately for each direction. The mean deviation showed 0.4 mm in longitudinal direction, 0.1 mm in the lateral direction, 0.1 mm in the anterior-posterior direction of the treatment couch. The data demonstrates the high accuracy and reproducibility. This study reinforces previous literature published.

  • PDF