• Title/Summary/Keyword: Fractional ratio

Search Result 173, Processing Time 0.023 seconds

Polyphase Structure for Fractional Ratio Oversampling (비정수배 과표본화를 위한 폴리페이즈 구조)

  • 이혁재;박영철;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1106-1113
    • /
    • 2000
  • In this, paper, a DFT based polyphase filter bank for the fractional ratio oversampling is proposed. Proper fractional oversampling ratio gives lower aliasing than the critical sampling and, at the same time, lower computational load than the integer ratio oversampling. In addition, filter bank design becomes easier by the reduced aliasing effect of fractional ratio oversampling. Proposed fractional ratio oaversampling polyphase structure is applied to a subband adaptive filter for acoustic echo cancellation where long adaptive filter are ofter required. Echo cancellation results show that fractional ratio oversampling gives comparable performance to the integer ratio oversampling with less computational load.

  • PDF

Effect of Pole to Slot Ratio on Cogging Torque and EMF Waveform in Permanent Magnet Motor with Fractional-Slot (분수슬롯을 가진 영구자석 전동기에서 극당 슬롯 비율이 코깅토크와 역기전력에 미치는 영향)

  • Lee, Kab-Jae;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.454-459
    • /
    • 2003
  • Conventional integral-slot design in permanent magnet(PM) motor tends to have a high cogging torque and large end turns, which contribute to copper losses. The fractional-slot design is effective compared to integral-slot design in the cogging torque and electromotive force(EMF) waveform. The effectiveness of fractional slot can be maximized by selecting optimal pole to slot ratio. This paper presents the effect of pole to slot ratio on the cogging torque and EMF waveform in the PM motor with fractional-slot. The effectiveness of the proposed designs has been confirmed by comparing waveform of EMF. cogging torque and torque ripple between conventional and new models.

Computing Fractional Bayes Factor Using the Generalized Savage-Dickey Density Ratio

  • Younshik Chung;Lee, Sangjeen
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.385-396
    • /
    • 1998
  • A computing method of fractional Bayes factor (FBF) for a point null hypothesis is explained. We propose alternative form of FBF that is the product of density ratio and a quantity using the generalized Savage-Dickey density ratio method. When it is difficult to compute the alternative form of FBF analytically, each term of the proposed form can be estimated by MCMC method. Finally, two examples are given.

  • PDF

Refining of Silicon by Fractional Melting Process (Fractional Melting에 의한 Si 정련에 관한 연구)

  • Kim, Kwi-Wook;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.598-607
    • /
    • 1997
  • Fractional melting process involves heating an alloy within its liquid-solid region simultaneously ejecting liquid from the solid-liquid mixture. The extent of the purification obtained is comparable to that obtained in multi-pass zone refining. The new fractional melting process in which centrifugal force was used for separating the liquid from the mixture has been developed and applied to the purification of the metallic grade. Refining ratio depends on partition ratio, cake wetness and diffusion in the solid, and it was controlled by various processing parameters such as rotating speed and heating rate. The new parameter called "refining partition coefficient" has been suggested to estimate the effects of processing variables on the refining ratio. Because major impurities in MG-silicon such as Fe, Al, Ni have a low segregation coefficient, good purification effect is expected. The results of refining MG-silicon(98%) showed that 3N-Si was obtained in refined solid of 50% of the original sample.

  • PDF

Bayesian One-Sided Testing for the Ratio of Poisson Means

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.619-631
    • /
    • 2006
  • When X and Y have independent Poisson distributions, we develop a Bayesian one-sided testing procedures for the ratio of two Poisson means. We propose the objective Bayesian one-sided testing procedures for the ratio of two Poisson means based on the fractional Bayes factor and the intrinsic Bayes factor. Some real examples are provided.

  • PDF

Bayesian One-Sided Testing for the Ratio of Poisson Means

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.295-306
    • /
    • 2006
  • When X and Y have independent Poisson distributions, we develop a Bayesian one-sided testing procedures for the ratio of two Poisson means. We propose the objective Bayesian one-sided testing procedures for the ratio of two Poisson means based on the fractional Bayes factor and the intrinsic Bayes factor. Some real examples are provided.

  • PDF

Bayesian Hypothesis Testing for the Ratio of Two Quantiles in Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.833-845
    • /
    • 2007
  • When X and Y have independent exponential distributions, we develop a Bayesian testing procedure for the ratio of two quantiles under reference prior. The noninformative prior such as reference prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we develop a Bayesian testing procedure based on fractional Bayes factor and intrinsic Bayes factor. We show that the posterior density under the reference prior is proper and propose the Bayesian testing procedure for the ratio of two quantiles using fractional Bayes factor and intrinsic Bayes factor. Simulation study and a real data example are provided.

  • PDF

Modeling and Analysis of the Fractional Order Buck Converter in DCM Operation by using Fractional Calculus and the Circuit-Averaging Technique

  • Wang, Faqiang;Ma, Xikui
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1008-1015
    • /
    • 2013
  • By using fractional calculus and the circuit-averaging technique, the modeling and analysis of a Buck converter with fractional order inductor and fractional order capacitor in discontinuous conduction mode (DCM) operations is investigated in this study. The equivalent averaged circuit model of the fractional order Buck converter in DCM operations is established. DC analysis is conducted by using the derived DC equivalent circuit model. The transfer functions from the input voltage to the output voltage, the duty cycle to the output voltage, the input impedance, and the output impedance of the fractional order Buck converter in DCM operations are derived from the corresponding AC-equivalent circuit model. Results show that the DC equilibrium point, voltage ratio, and all derived transfer functions of the fractional order Buck converter in DCM operations are affected by the inductor order and/or capacitor order. The fractional order inductor and fractional order capacitor are designed, and PSIM simulations are performed to confirm the correctness of the derivations and theoretical analysis.

Effect of Pole to Slot Ratio on Cogging torque and EMF Waveform in Fractional Slotted PM motor (PM 모터에서 극당 슬롯비율이 코깅토오크와 역기전력 파형에 미치는 영향력에 관한 연구)

  • Kim, Do-Wook;Min, Cheol-Ki;Jun, Myung-Sun;Lee, Kab-Jae;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.74-76
    • /
    • 2002
  • Conventional integral slot design tend to have a high cogging torque and large end turns which contribute to copper losses. The fractional slot is more effective compared to integral slot in the cogging torque and EMF waveform. The effectiveness of fractional slot can be maximized by selecting optimal pole to slot ratio. This paper presents the effect of pole to slot ratio on the cogging torque and EMF waveform in the fractional slotted permanent magnet(PM) motor. The effectiveness of the proposed designs had been confirmed by comparing cogging torque, and EMF waveform between conventional and new models which are analyzed by Finite Element Method(FEM).

  • PDF

Image Denoising Based on Adaptive Fractional Order Anisotropic Diffusion

  • Yu, Jimin;Tan, Lijian;Zhou, Shangbo;Wang, Liping;Wang, Chaomei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.436-450
    • /
    • 2017
  • Recently, the method based on fractional order partial differential equation has been used in image processing. Usually, the optional order of fractional differentiation is determined by a lot of experiments. In this paper, a denoising model is proposed based on adaptive fractional order anisotropic diffusion. In the proposed model, the complexity of the local image texture is reflected by the local variance, and the order of the fractional differentiation is determined adaptively. In the process of the adaptive fractional order model, the discrete Fourier transform is applied to compute the fractional order difference as well as the dynamic evolution process. Experimental results show that the peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) of the proposed image denoising algorithm is better than that of other some algorithms. The proposed algorithm not only can keep the detailed image information and edge information, but also obtain a good visual effect.