• Title/Summary/Keyword: Fractional crystallization method

Search Result 4, Processing Time 0.028 seconds

Manufacture of High Purity KI Crystal by Fractional Crystallization Method from Aqueous Waste of KI (KI 폐용액(廢溶液)으로부터 분별결정법(分別結晶法)에 의한 고순도(高純度) KI결정(結晶) 제조(製造)에 관한 연구(硏究))

  • Kim, Dae Weon;Jang, Seong Tae;Choi, Sung Bum
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.48-54
    • /
    • 2013
  • A laboratory study was carried out to recover KI crystals with high purity by using fractional crystallization method from a waste solution generated from the production of polarizing film for LCD industry. The waste solution contains 1.3% KI, and other impurities such as B, Na, and PVA etc. With purity higher than 99.5% KI crystals were produced through refining process such as vacuum evaporation, fractional crystallization, filtering, and 24hr aging. Also the concentrated impurities were eliminated about 70% by recrystallization.

A study on the Separation/recovery of Rare Earth Elements from Wast Permanent Magnet by a Fractional Crystallization Method and Sulfuric Acid Leaching (폐영구자석 황산침출과 분별결정법에 의한 희토류 분리·회수에 대한 연구)

  • Kim, Dae-Weon;Kim, Hee-Seon;Kim, Boram;Jin, Yun-Ho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • Nd-Fe-B waste permanent magnet contains about 20~30% rare earth elements and about 60~70% iron elements, and the rare earth and iron components were recovered through sulfuric acid leaching and fractional crystallization. Oxidation roasting was not performed for separation and recover of the rare earth and iron elements. The leaching characteristics were confirmed by using as variables the sulfuric acid concentration and the mineral solution concentration ratio. Sulfuric acid leaching was carried out for 3 hours for each sulfuric acid concentration. The leached solid phase was characterized for its crystalline phase, composition, and quantitative components by XRD and XRF analysis, and the filtrate was analyzed for components by ICP analysis. With sulfuric acid leaching at 3M sulfuric acid concentration, neodymium compounds were formed, the iron content was the least, and the recovery rate was high. After the filtrate remaining after sulfuric acid leaching was subjected to fractional crystallization through evaporation and concentration, the neodymium component was found to be concentrated 7.0 times and the iron component 2.8 times. In this study, the recovery rate of waste permanent magnets through sulfuric acid leaching and a fractional crystallization method without an oxidation and roasting process was confirmed to be about 99.4%.

Geochemical Characteristics of the Quaternary Jungok Basalt in Choogaryong Rift Valley, Mid-Korean Peninsula (추가령 열곡대에 분포하는 전곡현무암의 지화학적 특성)

  • Wee, Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.171-182
    • /
    • 1996
  • Quaternary Jungok basalts are distributed along the old Hantan river in Mid-Korean Peninsula. They were flowed out from Mt. Ori and Upland (680 m), and they formed narrow and long basalt plateau showing the layers of 10 to 20 meters in thickness and about 95 km in length. Fifty seven samples were collected from the study area, and sixteen rock samples were selected and analysed for major and trace elements. The analyzed samples have alkalic composition and show a relatively restricted variation in major element chemistry (except MgO), as comparing to the that of trace element. Based on major element chemistry, a quantitative modelling of fractional crystallization by multiple linear regression method suggests that the chemical evolution of the evolved rocks can be generated by fractionation of olivine, plagioc1ase, clinopyroxene, and magnetite in proportion of 56 : 25 : 17 : 2, respectively. The calculated trace element abundances by mineral proportions estimated from major element modelling, however, underestimate the incompatible element concentrations in the evolved rocks. According to the incompatible element abundances, simple fractional crystallization process has difficulty to explain the chemical variation of the evolved rocks. It seems that the other processes, which enrichment of incompatible elements can occure without concomitant changes in major element compositions, are needed in order to explain the chemical variation of the Jungok basalts. Thus, the major elements and compatible trace elements variations of the Jungok basalts are due to fractional crystallization, but the incompatible elements variation is due to fractional crystallization superimposed on already varying concentrations caused by slightly different degrees of melting of the same source, and/or due to periodic replenishment, tapping and fractionation(RTF) processes.

  • PDF

Study on Manufacturing Process of Potassium Nitrate using the Natural Materials in Joseon Dynasty (천연물을 이용한 조선시대의 염초 제조공정에 관한 연구)

  • Kim, Jun-Soo;Kim, Ji-Hun;Jang, Mi-Kyeng
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.1-14
    • /
    • 2015
  • This study was performed to investigate the manufacturing process of the Yeomcho(potassium nitrate), a necessary raw material for making gunpowder using soils and ashes by our ancestor. 10 types of soils including underfloor soil and 6 kinds of ashes including mugwort ash were collected, referencing the historical record. The ionic components extracted from the soils and ashes were analyzed by ICP(inductively coupled plasma atomic emission spectrometer) and IC(ion chromatograph). Nitrate ions and potassium ions were dominantly contained in soils and ashes, respectively. In particular, nitrate ions were found in the highest lebels in underfloor soil which often has much exposure to human living environments and accumulated fine organic matter. Potassium ions contained in ash was affected significantly by the type of plant and the growth environments and the measured levels were the highest in mugwort ashes. Yeomcho of 68% purity was obtained from the soil and ash mixture of 1:1 and thid purity was improved by about 14% by fractional crystallization method.