• 제목/요약/키워드: Fractional ARIMA-GARCH

검색결과 2건 처리시간 0.015초

장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구 (A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity)

  • 손흥구;김삼용
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.1053-1061
    • /
    • 2013
  • 본 논문은, 장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측 모형을 제안하고자 한다. 트래픽 과부하를 대비하기 위해서, 트래픽 용량은 트래픽의 예측치와 트래픽의 변동 크기에 따라 트래픽의 최대용량을 설정하여야 한다. 이를 위하여 교내 트래픽 자료 중 교내로 들어오는 트래픽과 교외로 나가는 트래픽에 이분산성과 장기기억 모형의 유용성을 확인하였다. 이에 대하여 AR-GARCH 모형, ARMA-GARCH 모형과 장기기억모형인 Fractional ARIMA와 장기기억과 이분산성을 고려한 Fractional ARMA-GARCH 모형을 적용하여 모형의 예측성능을 비교하였다.

단기 측정 인터넷 트래픽 예측을 위한 모형 성능 비교 연구 (A Study on Performance Analysis of Short Term Internet Traffic Forecasting Models)

  • 하명호;손흥구;김삼용
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.415-422
    • /
    • 2012
  • 본 연구에서는 단기에 측정되는 트래픽 자료를 예측하기 위하여 Holt-Winters, Fractional Seasonal ARIMA, AR-GARCH, Seasonal AR-GARCH 모형을 사용하여 각 모형의 예측 성능을 비교하고자 한다. 예측에 이용된 시계열 모형에 대해 소개하고, 실제 트래픽 자료에 적용하여 트래픽 자료를 분석한 결과 Holt-Winters방법이 예측력 측면에서 가장 우수하였다.