• Title/Summary/Keyword: Fraction of Diffusion Combustion

Search Result 60, Processing Time 0.018 seconds

Dilution and Thermal Effects of N2 Addition on Soot Formation in Co-flow Diffusion Flame (동축류 확산화염에서 질소첨가가 Soot발생에 미치는 영향)

  • Eom, Jae-Ho;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.185-191
    • /
    • 2002
  • The influence of N2 addition on soot formation, flame temperature and NOx emissions is investigated experimentally with methane fuel co-flow diffusion flames. The motivation of the present investigation is the differences in NOx reduction reported between fuel-side and oxidizer-side introduction of N2. To determine the influence of dilution alone, fuel was diluted with nitrogen while keeping the adiabatic flame temperature fixed by changing the temperature of the reactants. And to see the thermal effect only, air was supplied at different temperature without N2 addition. N2 addition into fuel side suppressed the soot formation than the case of oxidizer-side, while flame temperature enhanced the soot formation almost linearly. These results reveals the relative influences of the thermal, concentration effects of N2 additives on soot formation In accordance with experimental study, numerical simulation using CHEMKIN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results. Emission test revealed that NOx emissions were affected by not only flame temperature but also N2 addition.

  • PDF

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Flammability Limit and Flame Instability of Nitrogen-Diluted LPG Fuel (질소로 희석된 LPG 연료의 가연한계와 화염 안정성)

  • Ahn, Taekook;Nam, Younwoo;Lee, Kyung-Woo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.319-321
    • /
    • 2012
  • The flammability limit and the flame instability of nitrogen-diluted LPG fuel was experimentally studied on a co-flow flame configuration. The combustion reaction of nitrogen-diluted hydrocarbon with air could be interpreted as the equivalent reaction of pure fuel with nitrogen-diluted air. Nitrogen-diluted LPG with nitrogen up to 90 % of nitrogen mole fraction in fuel, which is close to the flammability limit, could form a co-flow flame. Various parameters such as laminar or turbulent flame, the existence of diffusion flame with pure fuel, air temperature could affect the limit of flame formation.

  • PDF

Nano-Soot Particle Formation in Inverse Diffusion Flames (인버스 확산화염에서의 나노 수트 입자 생성)

  • Lee, Eui-Ju;Shin, Hyun-Joon;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.19-26
    • /
    • 2003
  • Experimental measurements of flame structure and soot characteristics were performed for ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

  • PDF

Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4$-Air Diffusion Flame (화염편모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석)

  • Kim, Gun-Hong;Kim, Hu-Jung;Kim, Yong-Mo;Kim, Seung-Ku
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.3-9
    • /
    • 2003
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept for simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

  • PDF

Numerical Simulation of Unsteady $CH_4$/Air Jet Diffusion Flame (비정상 $CH_4$/공기 제트 확산화염에 관한 수치모사)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.113-122
    • /
    • 2000
  • Dynamic structures of unsteady $CH_4$/Air jet diffusion flames with flame-vortex interaction were numerically investigated. A time-dependent, axisymmetric computational model was adopted for this calculation. Two step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including gravitational effect show that the large outer vortices and the small inner vortex street can be well simulated without any additional disturbances in the downstream of nozzle tip. It was found that the temperature and species concentrations had various values for the same mixture fraction in flame-vortex interaction region. This unsteady jet flame configuration accompanying flame-vortex interaction is expected to give good implications for the structure of turbulent flames.

  • PDF

The Effect of Flame Radiation on NOx Emission Characteristic in Hydrogen Turbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 복사분율의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.47-58
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the l/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

Experimental Study on Behavior near Extinction in Buoyancy-minimized Counterflow Diffusion Flame (부력 효과의 최소화를 통한 소화 근처 대향류 확산화염 거동에 관한 실험적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Yun, Jin-Han;Keel, Sang-In;Kim, Tae Hyung;Kim, Young Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.23-26
    • /
    • 2012
  • Experimental study was conducted to elucidate flame extinction phenomena in counterflow flame. Using a curtain helium flow significantly reduced buoyancy such that the flame can be positioned at the center between the upper and lower nozzles even at the velocity ratio of 1.0. The curves of critical diluent mole fraction versus global strain rate have C-shapes. The flame oscillation was observed prior to low strain rate flame extinction at both flame conditions with and without minimizing buoyancy force. The results show that, at low strain rate flame, the self-excitation frequency with the order of 1.0 Hz in the case of utilizing pure helium gradually decreases in increase of $N_2$ mole fraction in the curtain flow, meaning that buoyancy suppresses the self-excitation of the outer edge flame.

  • PDF

Numerical Analysis for the Detailed Structure of Syngas Turbulent Nonpremixed Flames (석탄가스 난류비예혼합 화염장의 해석)

  • Lee, Jeong-Won;Kim, Chang-Hwan;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.775-778
    • /
    • 2007
  • The present study numerically investigate the detailed structure of the syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction, the transient flamelet model has been applied to simulate the combustion processes and $NO_X$ formation in the syngas turbulent nonpremixed flames. The single mixture fraction formulation is extended to account for the effects of the secondary inlet mixture. Computations are the wide range of syngas compositions and oxidizer dilutions. Based on numerical results, the detailed discussion has been made for the effects of syngas composition and oxidizer dilution on the structure of the syngas-air and syngas-oxygen turbulent nonpremixed flames.

  • PDF

Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor (가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석)

  • Joung, Dae-Ro;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF