• 제목/요약/키워드: Fraction of Diffusion Combustion

검색결과 60건 처리시간 0.025초

디젤기관의 스모크배출의 확산연소 의존성에 관한 연구 (A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion)

  • 한성빈;문성수;이성열
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

제트 확산화염구조에 대한 FDS 연소모델의 예측성능 비교 연구 (A Comparison Study of the Prediction Performance of FDS Combustion Model for the Jet Diffusion Flame Structure)

  • 박은정;오창보
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.22-27
    • /
    • 2010
  • A prediction performance of Fire Dynamics Simulator(FDS) developed by NIST for the diffusion flame structure was validated with experimental results of a laminar slot jet diffusion flame. Two mixture fraction combustion models and two finite chemistry combustion models were used in the FDS simulation for the validation of the jet diffusion flame structure. In order to enhance the prediction performance of flame structure, DNS and radiation model was applied to the simulation. The reaction rates of the finite chemistry combustion models were appropriately adjusted to the diffusion flame. The mixture fraction combustion model predicted the diffusion flame structure reasonably. A 1-step finite chemistry combustion model cannot predict the flame structure well, but the simulation results of a 2-step model were in good agreement with those of experiment except $CO_2$ concentration. It was identified that the 2-step model can be used in the investigation of flame suppression limit with further adjustment of reaction rates

급속 삽입법에 의한 화염 내부 온도 분포 측정 (Temperature Measurement in Concentric Diffusion Flames by Rapid Insertion Technique)

  • 이교우;정영록;정종수
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.75-83
    • /
    • 1999
  • The effect of temperature distributions on soot volume fraction in double-concentric diffusion flames have been investigated experimentally. Using fine thermocouple wires and a rapid insertion mechanism, we have measured temperature without the effect of soot particles attached to the thermocouple junction, which can lower the temperature signal about 100 K by increasing the heat loss from the junction by radiation. The temperature at the flame axis is higher in the double-concentric diffusion flames than in normal co-flow diffusion flames because of the inverse diffusion flame. However, it is almost the same as that at the periphery of normal flames, on which the inverse flame does not have an effect. Thus, the lower soot concentration found in the double-concentric diffusion flame can be explained by the effect of nitrogen diffusion from the central air jet.

  • PDF

하이브리드 연소의 수치 모델링 전략에 관한 연구 (Study on the Strategy of Numerical Modeling for Hybrid Combustion)

  • 윤창진;김진곤;문희장
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

합성가스를 이용한 역확산버너의 연소 및 복사열전달 특성, Part 1 : 공기-연료 연소 (Radiation Heat Flux and Combustion Characteristics of Inverse Diffusion Flame Burner Using Synthesis Gas, Part 1 : Air-Fuel Combustion)

  • 이필형;박창수;이재영;박봉일;황상순;이성호;안용수
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.33-40
    • /
    • 2009
  • Waste Thermal Pyrolysis Melting process was proposed and has been studied in order to prevent air pollution by dioxin and fly ash generated from combustion process for disposal of waste. In this study, applicability as the fuel of diffusion burner of synthesis gas formed from Waste Thermal Pyrolysis process was addressed. Results showed that there is no big difference in the flame shape between MNDF and SNDF, and lift off was detected in MIDF but flame is more stable in SIDF which contains hydrogen with high combustion velocity as flow rate in first nozzle is increased. And radiation heat flux in inverse diffusion flame of synthesis gas was found to be more by 1.5 times than that in inverse diffusion flame of methane because of higher mole fraction of $CO_2$ with high emissivity in product gas.

  • PDF

$H_{2}-SF_{6}$ 혼합 기체 연료에서 분자 차등 확산 효과 (Differential Molecular Diffusion Effects in $H_{2}-SF_{6}$ Mixture)

  • 오광철;최재준;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.16-25
    • /
    • 2000
  • The differential diffusion of two species in jet is considered. The direct photo images of $H_{2}/SF_{6}$ flame are taken and the non-react jets of $H_{2}/SF_{6}$ mixture are visualized with Rayleigh scattering method. The structures of Dual flame are found in the photography. As the volume fraction of $H_2$ in mixture is increased, the flame at side is long and as the volume fraction of $SF_{6}$ in mixture is increased, the flame at center is long. This phenomena are deduced from the non-react mixture using Rayleigh scattering method. Result show that the volume fraction in the mixture is important in differential diffusion.

  • PDF

난류 화염 구조 규명을 위한 조건 평균 측정법 (Conditional Sampling Measurement to Identify Flame Structures in Turbulent Combustion)

  • 허강열
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.8-11
    • /
    • 2004
  • Conditional sampling measurement is required for conditional averages as well as unconditional Favre averages to resolve different flame structures of turbulent combustion. A Favre average can be obtained as an integral of conditional average and Favre PDF in terms of the mixture fraction, which is a preferred choice as a sampling variable in diffusion controlled turbulent combustion. MILD combustion data are presented as an example for a conditionally averaged data set and comparison with CMC calculation results.

  • PDF

연소로에서 NO 배출 및 연소특성에 대한 수치해석적 연구 (Numerical Simulation of NO Emission and Combustion Characteristics in Furnace)

  • 전영남
    • 한국대기환경학회지
    • /
    • 제12권5호
    • /
    • pp.577-585
    • /
    • 1996
  • A screening study was performed in order to resolve the flow, combustion and emission characteristics of the gas furmace with co-axial diffusion flane burner. A control-valume based finite-difference method with the power-law scheme was employed for discretization. Numerical procedure for the differential equation was used by SIMPLEST to enclosute rapid converge. A k-.varepsilon. model was incorporated for the closure of turbulence. The mass fraction and mixture fraction were calculated by cinserved scalar method. An equilibrium analysis was employed to determine the concentration of radicals in the product stream and conserbation equations were them solved for N amd NO by Zelovich reaction scheme. The method was exercised in a simple one-dimensional case first, to determine the effects of air ratio, temperature and residence time on NO formation and applied to a furnace with co-axial diffusion flame burner.

  • PDF

산업용 가스화 용융로를 위한 산소 버너의 개발 (Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace)

  • 배수호;이은도;신현동;김성현;구재회;유영돈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

다양한 연료의 혼합에 따른 대향류 확산화염에서의 PAH 및 매연생성 특성 (Effect of Fuel Mixing on PAH and Soot Formation in Counterflow Diffusion Flames)

  • 윤승석;이상민;정석호
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.8-14
    • /
    • 2003
  • In order to investigate the effect of fuel mixing on PAH and soot formation, four species of methane, ethane, propane and propene have been mixed in counterlfow ethylene diffusion flame. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that the mixing of ethane (or propane) in ethylene diffusion flame produces more PAHs and soot than those of propene. Considering that propene directly dehydrogenates to propargyl radical, this behavior implied that the enhancement of PAH and soot formation by the fuel mixing of ethylene and ethane (or propane) cannot be explained solely by propargyl radical directly dehydrogenated from ethane (or propane). Thus, combination reactions between C1 and C2-species for the formation of propargyl was suggested to identify the synergistic effect occurring in the flames of ethylene and propane (or ethane) mixtures.

  • PDF