• 제목/요약/키워드: Fourier spectra

검색결과 333건 처리시간 0.024초

Fourier Transform Raman Studies of Methyl Red Adsorbed on γ-Alumina and Silica-Alumina

  • Park, Sun-Kyung;Lee, Choong-Keun;Min, Kyung-Chul;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1817-1821
    • /
    • 2004
  • Fourier transform Raman spectra of methyl red adsorbed on untreated and pretreated ${\gamma}$-alumina and silicaalumina calcined at 900 $^{\circ}C$ under 1 atm steam flowing were recorded. Spectral analysis shows that the active species adsorbed on ${\gamma}$-alumina was to be deprotonated methyl red, and on silica-alumina to be di-protonated. This indicates that ${\gamma}$-alumina adapted in this work holds Bronsted basicity, and silica-alumina Bronsted acidity. Raman intensities of methyl red on pretreated ${\gamma}$-alumina are about three times stronger than on untreated ${\gamma}$-alumina, while spectral features are unchanged. For silica-alumina, spectral features show modified vibrational characteristics upon surface hydroxylations generated from pretreatment. Consequently, the acidity loss for silica-alumina and the basicity gain for ${\gamma}$-alumina were observed by increasing the surface hydroxyl groups on the catalysts through pretreatment of the steam calcination.

Structural, Optical, and Chemical Properties of Cadmium Phosphate Glasses

  • Chung, Jae-Yeop;Kim, Jong-Hwan;Choi, Su-Yeon;Park, Hyun-Joon;Hwang, Moon-Kyung;Jeong, Yoon-Ki;Ryu, Bong-Ki
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.128-132
    • /
    • 2015
  • In this study, we prepared cadmium phosphate glasses with various compositions, given by $xCdO-(100-x)P_2O_5$ (x = 10-55 mol%), and analyzed their Fourier transform infrared spectra, dissolution rate, thermal expansion coefficient, glass transition temperature, glass softening temperature, and optical band gap. We found that the thermal expansion coefficient and dissolution rate increased while the glass transition temperature and glass softening temperature decreased with increasing CdO content. These results suggest that CdO acts as a network modifier in binary phosphate glass and weakens its structure.

수동형 FTIR 원격화학 탐지기를 이용한 SF6 오염운의 실시간 탐지 (Passive Remote Chemical Detection of SF6 Clouds in the Atmosphere by FTIR)

  • 정유진;박병황;김주현
    • 한국군사과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.8-14
    • /
    • 2014
  • Brightness temperature spectra acquired from FTIR(Fourier Transform Infrared)-SCADS (Standoff Chemical Agent Detection System) could be available for detection and identification of the chemical agents and pollutants from different background. IR spectrum range of 770 to 1350 $cm^{-1}$ is corresponding to "atmospheric window". A 2-dimensional(2D) brightness temperature spectrum was drawn from combining each data point through automatic continuous scanning of FTIR along with altitude and azimuth. At higher altitude, temperature of background was decreased but scattering effect of atmospheric gases was increased. Increase in temperature difference between background and blackbody in SCADS at higher temperature causes to increases in peak intensity of $SF_6$. This approach shows us a possibility that 2D visual information is acquired from scanning data with a single FTIR-SCADS.

Face Spoofing Attack Detection Using Spatial Frequency and Gradient-Based Descriptor

  • Ali, Zahid;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.892-911
    • /
    • 2019
  • Biometric recognition systems have been widely used for information security. Among the most popular biometric traits, there are fingerprint and face due to their high recognition accuracies. However, the security system that uses face recognition as the login method are vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this study, we propose a fast and robust method to detect face-spoofing attacks based on the analysis of spatial frequency differences between the real and fake videos. We found that the effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier spectra and, therefore, it is adequate to use the information about those regions to classify the input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we first divide the frequency domain image into local blocks, classify each local block independently, and then aggregate all the classification results by the weighted-sum approach. The effectiveness of the methodology is demonstrated using two different publicly available databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. Experimental results show that the proposed method provides state-of-the-art performance by processing fewer frames of each video.

Fourier-Transform Infrared Studies of Ionomeric Blend and Ionic Aggregation

  • Lee, Sang-Koog;Jeon, Seung-Ho;Ree, Tai-Kyue;Sohn, Jeong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권4호
    • /
    • pp.267-271
    • /
    • 1986
  • The ionomeric blend and the ionic aggregation studies by using a Fourier-transform infrared spectroscopy(FT-IR) are presented. Two ionomers were prepared, one is barium polyacrylate and the other is barium polystyrenesulfonate. The blend of the two ionomers of the barium salts shows intermolecular ionic interaction between the carboxylated ionomer and the sulfonated ionomer. This interaction leads to considerable differences between the spectrum of the blend and the sum of the spectra of the pure ionomers. From our results, it is shown that ionic interactions must play an important role in the compatibility of the two ionomers. In the ionic aggregation study, the bands due to asymmetric stretching mode of carboxylate anion(COO-) in the carboxylated ionomer and the ionomer blend increase in intensity with increasing the divalent barium cations. These results indicate the formation of ion pairs. The doublet due to the asymmetric stretching modes of the carboxylate anion(COO-) is concerned with a sort of local structure found in the ion aggregation. By considering a possible structure for multiplets in the blend, the spectral splitting and the frequency shift are well explained.

Properties of $Cl^-$ Binding Site in Oxygen-Evolving Complex of Photosystem II Studied by FTIR Spectroscopy

  • Koji Hasegawa;Kim, Yukihiro ura;Asako Ishii;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.376-378
    • /
    • 2002
  • Role of cl$^{[-10]}$ in photosynthetic oxygen-evolving complex was studied by light-induced Fourier transform infrared (FTIR) spectroscopy. cl$^{[-10]}$ depletion resulted in the suppression of amide I and amide II IR modes upon S$_1$ to S$_2$ transition. Br$^{[-10]}$ , 1$^{[-10]}$ and N0$_3$$^{[-10]}$ substituted FTIR difference spectra were very similar to that in cl$^{[-10]}$ reconstitution. F$^{[-10]}$ and $CH_3$COO$^{[-10]}$ substituted spectra were largely distorted. We succeeded in detecting the structural change of N0$_3$ $^{[-10]}$ in the cl$^{[-10]}$ site upon the S$_1$ to S$_2$ transition from $^{14}$ N0$_3$$^{[-10]}$ /$^{15}$ N0$_3$$^{[-10]}$ difference spectrum.

  • PDF

Product-Resolved Photodissociations of Iodotoluene Radical Cations

  • Shin, Seung-Koo;Kim, Byung-Joo;Jarek, Russell L.;Han, Seung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.267-270
    • /
    • 2002
  • Photodissociations of o-, m-, and p-iodotoluene radical cations were investigated by using Fourier-transform ion cyclotron resonance (FT-ICR) spectrometry. Iodotoluene radical cations were prepared in an ICR cell by a photoionization charge-transfer method. The time-resolved one-photon dissociation spectra were obtained at 532 nm and the identities of $C_7H_7^+$ products were determined by examining their bimolecular reactivities toward toluene-$d_8$. The two-photon dissociation spectra were also recorded in the wavelength range 615-670 nm. The laser power dependence, the temporal variation, and the identities of $C_7H_7^+$ were examined at 640 nm. The mechanism of unimolecular dissociation of iodotoluene radical cations is elucidated: the lowest barrier rearrangement channel leads exclusively to the formation of the benzyl cation, whereas the direct C-I cleavage channel yields the tolyl cations that rearrange to both benzyl and tropylium cations with dissimilar branching ratios among o-, m-, and p-isomers. With a two-photon energy of 3.87 eV at 640 nm, the direct C-I cleavage channel results in the product branching ratio, [tropylium cation]/[benzyl cation], in descending order, 0.16 for meta >0.09 for ortho >0.05 for para.

Experimental Study and Numerical Modeling of Keyhole Behavior during CO2 Laser Welding

  • Kim, Jong-Do;Oh, Jin-Seok;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.282-292
    • /
    • 2007
  • The present paper describes the results of high speed photography, acoustic emission (AE) detection and plasma light emission (LE) measurement during $CO_2$ laser welding of 304 stainless steel in different processing conditions. Video images with high spatial and temporal resolution allowed to observe the melt dynamics and keyhole evolution. The existence of keyhole was confirmed by the slag motion on the weld pool. The characteristic frequencies of flow instability and keyhole fluctuations at different welding speed were measured and compared with the results of Fourier analyses of temporal AE and LE spectra. The experimental results were compared with the newly developed numerical model of keyhole dynamics. The model is based on the assumption that the propagation of front part of keyhole into material is due to the melt ejection driven by laser induced surface evaporation. The calculations predict that a high speed melt flow is induced at the front part of keyhole when the sample travel speed exceeds several 10 mm/s. The numerical analysis also shows the hump formation on the front keyhole wall surface. Experimentally observed melt behavior and transformation of the AE and LE spectra with variation of welding speed are qualitatively in good agreement with the model predictions.

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons by Near Infrared Spectroscopy using a Partial Least Squares Regression

  • Nam, Jae-Jak;Lee, Sang-Hak;Park, Ju-Eun
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1276-1276
    • /
    • 2001
  • Polycyclic aromatic hydrocarbons(PAHs) are widely distributed in the environment and are often implicated as potential carcinogens. The chromatographic methods of detection and quantitative determination of PAHs in environmental samples are costly, time consuming, and do not account for all kinds of PAHs. This work describes a quantitative spectroscopic method for the analysis of mixtures of eight PAHs using multivariate calibration models for Fourier transform near infrared(FT-NIR) spectral data. The NIR spectra of mixtures of PAHs (anthracene, pyrene, 1,2-benzanthracene, perylene, chrysene, benzo(a)pyrene, 1-methylanthracene and benzo(ghi)perylene) were measured in the wavelength range from 1100 nm to 2500 nm. The spectral data were processed using a partial least squares regression. We have studied the spectral characteristics of NIR spectra of mixtures of PAHs. It was possible to determine each PAM used in this study at the environmental level(mg L-1) in the laboratory samples. Further development may lead to the rapid determination of more PAHs in typical environmental samples.

  • PDF

태양전지용 CdSe 나노입자의 합성 (Preparation and Characterization of CdSe nanoparticle for Solar Cell application)

  • 김신호;박명국;이보람;이현주;김양도
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.318-321
    • /
    • 2007
  • CdSe nanoparticles were prepared by chemical solution methods using $CdCl_2{\cdot}4H_2O$ (or $Cd(NO_3)_ 2{\cdot}4H_2O$) and $Na_2SeSO_3$. The characteristics of CdSe nanoparticles were controlled by the react ion time, reaction temperature and reaction method as well as the surfactants. Cetyltrimethyl ammonium bromide(CTAB) was used as a capping agent to control the chemical reactions in aqueous solution. Polyvinylalcohol(PVA) was used as a templet in sono-chemical method. CdSe nanoparticles synthesized in aqueous solution showed homogeneous size distribution with relatively stable surface. CdSe nanoparticles synthesized in non-aqueous solution containing diethanolamine(DEA) showed the structure transformation from cubic to hexagonal as the reduction temperature increased from 80 to $160^{\circ}C$. Core shell CdSe was synthesized by sono-chemical method. Characteristics of CdSe nanoparticles were analyzed using transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), UV-Vis absorption spectra, fourier transform infrared spectroscopy(FT-IR) and photoluminescence spectra spectroscopy(PL). This paper presents simple routes to prepare CdSe nanoparticles for solar cell applications.

  • PDF