• Title/Summary/Keyword: Fourier series expansion

Search Result 113, Processing Time 0.018 seconds

Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings

  • Isavand, S.;Bodaghi, M.;Shakeri, M.;Mohandesi, J. Aghazadeh
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.1-28
    • /
    • 2015
  • In this paper, the dynamic response of functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments subjected to impulsive loads is investigated for the first time. FGSs composed of graded ferritic and austenitic regions together with bainite and martensite intermediate layers are analyzed. Thermo-mechanical material properties of FGS composites are predicted according to the microhardness profile of FGS composites and approximated with appropriate functions. Based on the three-dimensional theory of thermo-elasticity, the governing equations of motionare derived in spatial and time domains. These equations are solved using the hybrid Fourier series expansion-Galerkin finite element method-Newmark approach for simply supported boundary conditions. The present solution is then applied to the thermo-elastic dynamic analysis of cylindrical panels with three different arrangements of material compositions of FGSs including ${\alpha}{\beta}{\gamma}M{\gamma}$, ${\alpha}{\beta}{\gamma}{\beta}{\alpha}$ and ${\gamma}{\beta}{\alpha}{\beta}{\gamma}$ composites. Benchmark results on the displacement and stress time-histories of FGS cylindrical panels in thermal environments under various pulse loads are presented and discussed in detail. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state of the art of this problem, and provide pertinent results that are instrumental in the design of FGS structures under time-dependent mechanical loadings.

Wave Deformation by Submerged Flexible Circular Disk (몰수된 원형 유연막에 의한 파랑변형)

  • 조일형;김무현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.116-129
    • /
    • 2000
  • The interaction of incident monochromatic waves with a tensioned, flexible, circular membrane submerged horizontally below free surface is investigated in the frame of three-dimensional linear hydro-elastic theory. The velocity potential is split into two parts i.e. the diffraction potential representing the scattering of incident waves by a rigid circular disk and the radiation potential describing motion induced waves by elastic responses of flexible membrane. The fluid domain is divided into three regions, and the diffraction and radiation potentials in each region are expressed by the Fourier Bessel series. The displacement of circular membrane is expanded with a set of natural functions, which satisfy the membrane equation of motion and boundary conditions. The unknown coefficients in each region are determined by applying the continuity of pressure and normal velocity at the matching boundaries. The results show that various types of wave focusing are possible by controlling the size, submergence depth, and tension of membrane.

  • PDF

Dynamic Boundary Element Analysis of Underground Structures Using Multi-Layered Half-Plane Fundamental Solutions (2차원 다층 반무한해를 이용한 지하구조계의 동적 경계요소 해석)

  • 김문겸;이종우;조성용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.59-68
    • /
    • 1997
  • In analysis of underground structures, the effects of artificial boundary conditions are considered as one of the major reasons for differences from experimental results. These phenomena can be overcome by using the boundary elements which satisfy the multi-layered half space conditions. The fundamental solutions of multi-layered half-space for boundary element method is formulated satisfying the transmission and reflection of waves at each layer interface and radiation conditions at bottom layer. The governing equations can be obtained from the displacements at each layer which are expressed in terms of harmonic functions. All types of waves can be included using the complete response from semi-infinite integrals with respect to horizontal wavenumbers using expansion of Fourier series and Hankel transformation. Two dimensional Green's functions are derived from cylindrical Navier equations and potentials performing infinite integration in y-direction. In this case, it is effective to transform into two dimensional problem using semi-analytical integration and sinusoidal Bessel function. Some verifications are given to show the accuracy and efficiency of the developed method, and numerical examples to demonstrate the dynamic behavior of underground with various properties.

  • PDF