• Title/Summary/Keyword: Fourier Transform Spectroscopy

Search Result 1,022, Processing Time 0.027 seconds

Polymorphic Characterization of Pharmaceutical Solids, Donepezil Hydrochloride, by 13C CP/MAS Solid-State Nuclear Magnetic Resonance Spectroscopy

  • Park, Tae-Joon;Ko, Dong-Hyun;Kim, Young-Ju;Kim, Yon-Gae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2007-2010
    • /
    • 2009
  • Donepezil hydrochloride is a reversible acetylcholinesterase inhibitor that is used in the treatment of Alzheimer’s disease to improve the cognitive performance. It shows different crystalline forms including hydrates. Therefore, it is very important to confirm the polymorphic forms in the formulations of pharmaceutical materials because polymorphs of the same drug often exhibit significant differences in solubility, bioavailability, processability and physical/chemical stability. In this paper, four different forms of donepezil hydrochloride were prepared and characterized using X-ray powder diffraction, Fourier transform infrared, and solid-state nuclear magnetic resonance (NMR) spectroscopy. This study showed that solid-state NMR spectroscopy is a powerful technique for obtaining structural information and the polymorphology of pharmaceutical solids.

Chemical synthesis of processable conducting polyaniline derivative with free amine functional groups

  • Kar, Pradip
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Processable conducting polyaniline derivative with free amine functional groups was successfully synthesized from the monomer o-phenylenediamine in aqueous hydrochloric acid medium using ammonium persulfate as an oxidative initiator. The synthesized poly(o-phenylenediamine) (PoPD) in critical condition was found to be completely soluble in common organic solvents like dimethyl sulfoxide, N,N-dimethyl formamide etc. From the intrinsic viscosity measurement, the optimum condition for the polymerization was established. The polymer was characterized by ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy ($^1HNMR$) and thermogravimetric (TGA) analyses. The weight average molecular weights of the synthesized polymers were determined by the dynamic light scattering (DLS) method. From the spectroscopic analysis the structure was found to resemble that of polyaniline derivative with free amine functional groups attached to ortho/meta position in the phenyl ring. However, very little ladder unit was also present with in the polymer chain. The moderate thermal stability of the synthesized polymer could be found from the TGA analysis. The average DC conductivity of $2.8{\times}10^{-4}S/cm$ was observed for the synthesized polymer pellet after doping with hydrochloric acid.

Investigation of Oxidation of Silicon Nanoparticles Capped with Butyl and Benzophenone against Its Stabilization (Benzophenone과 알킬 그룹으로 Capping된 실리콘 나노입자의 안정성에 대한 산화 연구)

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.133-137
    • /
    • 2010
  • New synthetic route and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) were achieved from the reaction of silicon tetrachloride with sodium/benzophenone ketal reducing agent followed by n-butyllithium. Surface of silicon nanoparticles was derivatized with butyl group. Effect of oxidation of silicon nanoparticle with benzophenone was investigated for their stabilization. Optical characteristics of silicon nanoparticles were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and photoluminescence (PL) spectroscopy. Butyl-capped silicon nanoparticles exhibited an emission band at 410 nm with excitation wavelength of 360 nm. Average size of n-butyl-capped silicon nanoparticles was obtained by particle size analyzer (PSA) and transmission electron microscopy (TEM). Average size of n-butyl-capped Si nanoparticles was about 6.5 nm.

Field Emission Characteristics of Nitrogen-Doped and Micro-Patterned Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition

  • Shin, Ik-Ho;Lee, Taek-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.133-134
    • /
    • 2000
  • Effect of nitrogen doping on field emission characteristics of patterned Diamond-like Carbon (DLC) films was studied. The patterned DLC films were fabricated by the method reported previously[1]. Nitrogen doping in DLC film was carried out by introducing $N_2$ gas into the vacuum chamber during deposition. Higher emission current density of $0.3{\sim}0.4$ $mA/cm^2$ was observed for the films with 6 at % N than the undoped films but the emission current density decreased with further increase of N contents. Some changes in CN bonding characteristics with increasing N contents were observed. The CN bonding characteristics which seem to affect the electron emission properties of these films were studied by Raman spectroscopy, x-ray photoemission spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The electrical resistivity and the optical band gap measurements showed consistence with the above analyses.

  • PDF

Application of Carbon-13 NMR spectroscopy to the chemistry of natural products

  • Yamasaki, Kazuo
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.57-64
    • /
    • 1980
  • Carbon-13 NMR spectroscopy(abbreviated CMR) is an extremely powerful strategy for the study of natural organic molecules. The information derivable from CMR is often complementary to that obtianed form proton NMR spectroscopy (PMR). Because of low natural abundance of $^{13}C$ nucleus (1.1%) coupled with low inherent sensitivity relative to $^{1}H$ (about 1/64), CMR experiment is approximately 6000 times less sensitive than PMR. Despite of this, now it is possible to measure CMR of small amount of compound by the development of three significant ingenious techniques, i. e. a) computer time-averaging, b) wide-band (or noise modulated) proton decoupling, and c) pulsed Fourier transform (FT) NMR : For general recognition of CMR, its fundamental aspects of CMR are briefly reviewed.

  • PDF

NO2 gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.84-91
    • /
    • 2012
  • Single and few-layer graphene nanosheets (GNs) have successfully synthesized by a modified Hummer's method followed by chemical reduction of exfoliated graphene oxide (GO) in the presence of hydrazine monohydrate. GO and GNs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffractions (XRD), Raman spectroscopy, Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Optical microscopy (OM) and by electrical conductivity measurements. The result showed that electrical conductivity of GNs was significantly improved, from $4.2{\times}10^{-4}$ S/m for GO to 12 S/m for GNs, possibly due to the removal of oxygen-containing functional group during chemical reduction. In addition, the $NO_2$ gas sensing characteristics of GNs are also discussed.

NOISE Spectroscopy: Applications to Solid State NMR

  • Yang, Doo-Kyung;Zax, D.B.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.142-154
    • /
    • 2002
  • One of the oldest, still unsolved, and often ignored problems in magnetic resonance remains the issue of how to observe undistorted, normal one-dimensional spectra where the frequencies and their relative intensities represent faithfully the distribution of spins and sites in the sample within the magnet. Often distortions in these parameters are accepted, as the price of sensitivity enhancement, or because it is unclear just how these distortions might be avoided. Surprisingly enough, the problem is exacerbated by the use of modern techniques of pulsed Fourier transform NMR. Noise spectroscopy is an approach to solving the problem of distorted NMR spectra, which is largely under appreciated; it promises virtually "unlimited" distortionless bandwidths without costly hardware investments. Nonetheless, its exploitation remains limited. We will discuss why noise spectroscopy belongs in the arsenal of tricks spectroscopists should be aware of, show examples where its use is essential if accurate, quantitative NMR is to be expected, and discuss some recent approaches which extend its applicability yet further, particularly in solid state NMR and in applications to quadrupolar nuclear spins.

  • PDF

Roll-to-Roll Barrier Coatings on PET Film by Using a Closed Drift Magnetron Plasma Enhanced Chemical Vapor Deposition

  • Lee, Seunghun;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.124-125
    • /
    • 2012
  • Korea institute of materials science (KIMS) use a linear deposition source called as a closed drift linear plasma source (CDLPS) as well as dual magnetron sputtering (DMS) to deposit SiOxCyHz films in $HMDSO/O_2$ plasma. The CDLPS generates linear plasma using closed drifting electrons and can reduce device degradations due to energetic ion bombardments on organic devices such as organic photovoltaic and organic light emission diode by controlling an ion energy. The deposited films are investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Optical emission spectroscopy (OES) is used to measure relative radical populations of dissociation and recombination products such as H, CH, and CO in plasma. And SiOx film is applied to a barrier film on organic photovoltaic devices.

  • PDF

A Study on the Mixture of Detergents (혼합세제에 관한 연구)

  • Choe, Koang-Hoon;Kwon, Sun-Ja;Lee, Ki-Chang;Hwang, Yong-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.73-75
    • /
    • 1987
  • Linear alkylbenzene sulfonate (LAS) from the mixture of anionic and nonionic detergents (containing amide type and alkylphenoxy polyethanol type) is identified by Fourier transform infrared spectrometer, separated using physical properties (solubility) and determined by nuclear magnetic resonance spectroscopy.