• 제목/요약/키워드: Fourier Transform(STFT)

검색결과 122건 처리시간 0.017초

수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성 (Baleen Whale Sound Synthesis using a Modified Spectral Modeling)

  • 전희성;파르나브 다르;김철홍;김종면
    • 정보처리학회논문지B
    • /
    • 제17B권1호
    • /
    • pp.69-78
    • /
    • 2010
  • 스펙트럴 모델링 합성 (Spectral Modeling Synthesis, SMS)은 뮤지컬 사운드 모델링을 위한 강력한 툴로써 사용되어 왔다. 이 기술은 사운드를 결정적 (deterministic) 성분과 통계적 (stochastic) 성분의 조합으로 간주한다. Deterministic 성분은 크기 (amplitude), 주파수 (frequency), 위상 (phase) 함수에 따른 사인파의 연속으로 표현되는 반면, stochastic 성분은 백색 잡음 (white noise)으로 자극된 시간 변화 필터로서 동작하는 크기 스펙트럼 엔블로프 (spectrum envelop)의 연속으로 표현된다. 이러한 표현들은 원음의 모든 지각적인 특징들을 활용해 합성된 사운드를 구현 가능케 한다. 하지만, 고래 소리와 같은 복잡한 사운드에 대해 기존의 SMS를 사용할 때 연속적인 프로임에 있는 부분 주파수가 다른 경우 결정적 성분에서 상당한 위상 변화가 발생한다. 왜냐하면 기존의 SMS는 사운드의 결정적 성분을 합성하기 위해서 계산된 위상을 이용하기 때문이다. 그 결과 기존의 SMS는 높은 주파수 영역에서 원래 스펙트럼과 합성된 스펙트럼 사이에서 좋은 스펙트럼 매칭을 제공하지 못한다. 이러한 문제를 해결하기 위해 본 논문은 수정된 SMS를 제안한다. 제안하는 SMS는 결정적 성분을 합성하기 위해 원래 주파수 정보를 이용할 뿐만 아니라 주파수 영역에서 복잡한 잔재 (residual) 스펙트럼을 계산함으로써 원음과 합성음 사이에서 좋은 스펙트럼 매칭을 제공한다. 다양한 고래 소리 합성을 모의 실험한 결과, 제안된 방법은 시간 및 주파수 영역에서 기존의 SMS와 유사한 성능을 보였다. 하지만, 제안된 방법은 기존의 SMS보다 스펙트럼 매칭에서 더 좋은 성능을 보였다.

연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현 (Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar)

  • 김경민;김성진;남궁호정;정윤호
    • 한국항행학회논문지
    • /
    • 제26권4호
    • /
    • pp.211-218
    • /
    • 2022
  • 연속파 레이다는 카메라나 라이다와 같은 센서에 비해서 안정성과 정확성이 보장된다는 장점이 있다. 또한 이진 신경망은 다른 딥러닝 기술에 비해서 메모리 사용량과 연산 복잡도를 크게 줄일 수 있는 특징이 있다. 따라서 본 논문에서는 연속파 레이다와 이진 신경망 기반 사람 식별 및 동작 분류 시스템을 제안한다. 연속파 레이다 센서를 통해 수신된 신호를 단시간 푸리에 변환함으로써 스펙트로그램을 생성한다. 이 스펙트로그램을 기반으로 레이다를 향해 사람이 다가오는지 감지하는 알고리즘을 제안한다. 더불어, 최적화된 이진 신경망 모델을 설계하여 사람 식별 90.0%, 동작 분류 98.3%의 우수한 정확도를 지원할 수 있음을 확인하였다. 이진 신경망 연산을 가속하기 위해 FPGA (field programmable gate array)를 이용하여 이진 신경망 연산에 대한 하드웨어 가속기를 설계하였다. 해당 가속기는 1,030개의 로직, 836개의 레지스터, 334.906 Kbit의 블록 메모리를 사용하여 구현되었고, 추론에서 결과 전송까지 총 연산 시간이 6 ms로 실시간 동작이 가능함을 확인하였다.