• Title/Summary/Keyword: Four-point method

Search Result 956, Processing Time 0.029 seconds

Evaluation of multi-lane transverse reduction factor under random vehicle load

  • Yang, Xiaoyan;Gong, Jinxin;Xu, Bohan;Zhu, Jichao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.725-736
    • /
    • 2017
  • This paper presents the two-, three-, and four-lane transverse reduction factor based on FEA method, probability theory, and the recently actual traffic flow data. A total of 72 composite girder bridges with various spans, number of lanes, loading mode, and bridge type are analyzed with time-varying static load FEA method by ANSYS, and the probability models of vehicle load effects at arbitrary-time point are developed. Based on these probability models, in accordance to the principle of the same exceeding probability, the multi-lane transverse reduction factor of these composite girder bridges and the relationship between the multi-lane transverse reduction factor and the span of bridge are determined. Finally, the multi-lane transverse reduction factor obtained is compared with those from AASHTO LRFD, BS5400, JTG D60 or Eurocode. The results show that the vehicle load effect at arbitrary-time point follows lognormal distribution. The two-, three-, and four-lane transverse reduction factors calculated by using FEA method and probability respectively range between 0.781 and 1.027, 0.616 and 0.795, 0.468 and 0.645. Furthermore, a correlation between the FEA and AASHTO LRFD, BS5400, JTG D60 or Eurocode transverse reduction factors is made for composite girder bridges. For the two-, three-, and four-lane bridge cases, the Eurocode code underestimated the FEA transverse reduction factors by 27%, 25% and 13%, respectively. This underestimation is more pronounced in short-span bridges. The AASHTO LRFD, BS5400 and JTG D60 codes overestimated the FEA transverse reduction factors. The FEA results highlight the importance of considering span length in determining the multi-lane transverse reduction factors when designing two-lane or more composite girder bridges. This paper will assist bridge engineers in quantifying the adjustment factors used in analyzing and designing multi-lane composite girder bridges.

Change of Bending Properties of 2×4 Larch Lumber According to Span Length in the Four Point Bending Test (4점 휨 시험에서 지간 거리에 따른 2×4 낙엽송 제재목의 휨 성능 변화)

  • Kim, Chul-Ki;Kim, Kwang-Mo;Lee, Sang-Joon;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.486-496
    • /
    • 2018
  • This study was conducted to confirm an effect of span length on bending properties of larch dimensional lumber in the four point bending test. The size of specimen in this study was 38 (width) ${\times}$ 89 (depth) ${\times}$ 3,600 (length) $mm^3$, and average air-dry density and moisture content of the specimens was $543.5kg/m^3$ and 10.5%, respectively. Visually graded No. 1 dimensional lumbers of 248 were divided by two groups to compare modulus of rupture (MOR) and modulus of elasticity (MOE). One group was tested in the four point bending test with span length of 1,650 mm, and other was tested with span length of 3,000 mm. While MOE was not different according to span length in 5% significance level, MOR was different in accordance with span lengths and was in inverse proportion to change of span length. Fifth percentiles of MOR in span length of 1,650 and 3,000 mm were 28.65 and 25.70 MPa, respectively. It was confirmed that the difference between MORs in each case increased as normalized rank increased. This is because of size effect in Weibull weakest link failure theory. Therefore, KS F 2150, in which there is only regulation about span to depth ratio of 15 or more, is needed to be revised to contain a method considering size effect for MOR. From the method, various results of bending test with different size of lumber could be used to determine design value of lumber.

Analytical methods for determination of double-K fracture parameters of concrete

  • Kumar, Shailendra;Pandey, Shashi Ranjan;Srivastava, A.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.319-340
    • /
    • 2013
  • This paper presents a comparative study on the double-K fracture parameters of concrete obtained using four existing analytical methods such as Gauss-Chebyshev integral method, simplified Green's function method, weight function method and simplified equivalent cohesive force method. Two specimen geometries: three point bend test and compact tension specimen for sizes 100-500 mm at initial notch length to depth ratios 0.25 and 0.4 are used for the comparative study. The required input parameters for determining the double-K fracture parameters are derived from the developed fictitious crack model. It is found that the cohesive toughness and initial cracking toughness determined using weight function method and simplified equivalent cohesive force method agree well with those obtained using Gauss-Chebyshev integral method whereas these fracture parameters determined using simplified Green's function method deviates more than by 11% and 20% respectively as compared with those obtained using Gauss-Chebyshev integral method. It is also shown that all the fracture parameters related with double-K model are size dependent.

Moth-Flame Optimization-Based Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions

  • Shi, Ji-Ying;Zhang, Deng-Yu;Xue, Fei;Li, Ya-Jing;Qiao, Wen;Yang, Wen-Jing;Xu, Yi-Ming;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1248-1258
    • /
    • 2019
  • This paper presents a moth-flame optimization (MFO)-based maximum power point tracking (MPPT) method for photovoltaic (PV) systems. The MFO algorithm is a new optimization method that exhibits satisfactory performance in terms of exploration, exploitation, local optima avoidance, and convergence. Therefore, the MFO algorithm is quite suitable for solving multiple peaks of PV systems under partial shading conditions (PSCs). The proposed MFO-MPPT is compared with four MPPT algorithms, namely the perturb and observe (P&O)-MPPT, incremental conductance (INC)-MPPT, particle swarm optimization (PSO)-MPPT and whale optimization algorithm (WOA)-MPPT. Simulation and experiment results demonstrate that the proposed algorithm can extract the global maximum power point (MPP) with greater tracking speed and accuracy under various conditions.

Experimental study on freezing point of saline soft clay after freeze-thaw cycling

  • Wang, Songhe;Wang, Qinze;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.997-1004
    • /
    • 2018
  • The brine leakage is a tough problem in artificial freezing engineering. This paper takes the common soft clay in Wujiang District as the study object, and calcium chloride solutions with six salinity levels were considered. The 'classic' cooling curve method was employed to measure the freezing point of specimens after freeze-thaw. Results indicate that four characteristic stages can be observed including supercooling, abrupt transition, equilibrium and continual freezing, strongly dependent on the variation of unfrozen water content. Two characteristic points were found from the cooling curves, i.e., freezing point and initial crystallization temperature. A critical value for the former exists at which the increment lowers. The higher the saline content approximately linearly, lower the freezing point. In the initial five cycles, the freezing point increases and then stabilizes. Besides, the degree of supercooling was calculated and its correlations with water, salt and freeze-thaw cycles were noted. Finally, an empirical equation was proposed for the relationship of freezing point and three main factors, i.e., water content, saline content and freeze-thaw cycles. Comparison of calculated and measured data proves that it is reliable and may provide guidance for the design and numerical analysis in frozen soil engineering.

Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method (반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화)

  • Lee, H.W.;Lee, G.A;Choi, S.;Yoon, D.J.;Lim, S.J.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

An Improved Variable Step Size MPPT Algorithm Based on INC

  • Xu, Zhi-Rong;Yang, Ping;Zhou, Dong-Bao;Li, Peng;Lei, Jin-Yong;Chen, Yuan-Rui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.487-496
    • /
    • 2015
  • In order to ensure that photovoltaic (PV) systems work at the maximum power point (MPP) and maximize the economic benefits, maximum power point tracking (MPPT) techniques are normally applied to these systems. One of the most widely applied MPPT methods is the incremental conductance (INC) method. However, the choice of the step size still remains controversial. This paper presents an improved variable step size INC MPPT algorithm that uses four different step sizes. This method has the advantages of INC but with the ability to validly adjust the step size to adapt to changes of the PV's power curve. The presented algorithm also simultaneously achieves increased rapidity and accuracy when compared with the conventional fixed step size INC MPPT algorithm. In addition, the theoretical derivation and specific applications of the proposed algorithm are presented here. This method is validated by simulation and experimental results.

[Retracted]Hot Spot Analysis of Tourist Attractions Based on Stay Point Spatial Clustering

  • Liao, Yifan
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.750-759
    • /
    • 2020
  • The wide application of various integrated location-based services (LBS social) and tourism application (app) has generated a large amount of trajectory space data. The trajectory data are used to identify popular tourist attractions with high density of tourists, and they are of great significance to smart service and emergency management of scenic spots. A hot spot analysis method is proposed, based on spatial clustering of trajectory stop points. The DBSCAN algorithm is studied with fast clustering speed, noise processing and clustering of arbitrary shapes in space. The shortage of parameters is manually selected, and an improved method is proposed to adaptively determine parameters based on statistical distribution characteristics of data. DBSCAN clustering analysis and contrast experiments are carried out for three different datasets of artificial synthetic two-dimensional dataset, four-dimensional Iris real dataset and scenic track retention point. The experiment results show that the method can automatically generate reasonable clustering division, and it is superior to traditional algorithms such as DBSCAN and k-means. Finally, based on the spatial clustering results of the trajectory stay points, the Getis-Ord Gi* hotspot analysis and mapping are conducted in ArcGIS software. The hot spots of different tourist attractions are classified according to the analysis results, and the distribution of popular scenic spots is determined with the actual heat of the scenic spots.

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

The Phase Shift and Phase Error Analysis in the Shearographic System (Shearographic system에서의 위상천이 및 위상오차 분석)

  • Kim, Soo-Gil;Ko, Myung-Sook
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.143-145
    • /
    • 2005
  • We present the method to obtain four speckle patterns with relative phase shift of ${\pi}/2$ passive devices such as wave plate and polarizer, and calculate the phase at each point of the speckle pattern in shearographic system using Wollaston pin And, we analyzed the phase error caused by wave plates used in the proposed method by Jones matrix.

  • PDF