• 제목/요약/키워드: Four-Bar Link

검색결과 41건 처리시간 0.029초

간극이 있는 링크기구의 동특성 (Dynamic Characteristics of Link Mechanism with Clearance)

  • 최연선;배성준
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1050-1057
    • /
    • 1999
  • The existence of clearance at the link joint of a machine is inevitable for assembly and mobility. During the cyclic operation of a machine, rapid changes of the direction and magnitude of connection forces cause momentary loss of contact between the pin and the bushing at the link joint. Contact loss at the clearance joint gives rise to undesirable impact. The impulsive force affects on the performance of the machine, and leads to excessive vibration, noise and faster wear in the connecitons. In this paper, experiment and theoretical analysis were carried out for the variation of crank speed and clearance size. The link mechanism employed in this investigation was newly designed to check the effects of parameter changes on the occurrence of contact loss and on the magnitude of the impact force. The contact loss and impact position were calculated with various driving conditions.

  • PDF

Development of a Biped Walking Robot Actuated by a Closed-Chain Mechanism

  • Choi, Hyeung-Sik;Oh, Jung-Min;Baek, Chang-Yul;Chung, Kyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.209-214
    • /
    • 2003
  • We developed a new type of human-sized BWR (biped walking robot), named KUBIR1 which is driven by the closed-chain type of actuator. A new type of the closed-chain actuator for the robot is developed, which is composed of the four-bar-link mechanism driven by the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of 6 D.O.F joints. For front walking, three pitch joints and one roll joint at the ankle. In addition to this, one yaw joint for direction change, and another roll joint for balancing the body are attached. Also, the robot has two D.O.F joints of each hand and three D.O.F. for eye motion. There are three actuating motors for stereo cameras for eyes. In all, a 18 degree-of-freedom robot was developed. KUBIR1 was designed to walk autonomously by adapting small 90W DC motors as the robot actuators and batteries and controllers are on-boarded. The whole weight for Kubir1 is over 90Kg, and height is 167Cm. In the paper, the performance test of KUBIR1 will be shown.

  • PDF

4절 링크구조를 응용한 플랙셔 힌지 기반 모듈형 나노포지셔너 (Modularized Flexure-Hinge Nanopositioner Based on Four-Bar-Link-Mechanism)

  • 채기운;배진현;정영훈
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.851-858
    • /
    • 2011
  • Nanopositioning technologies play an important role in the progress of electronics, optics, bio-engineering and various nano-scale technologies. As a result, various practical nanopositioning methods have been successfully introduced. Flexure mechanism is a valuable method in nanopositioning because of smooth and friction-free motion and the infinitesimal movement near to sub-nm. In this study a modularized nanopositioner based on parallelogram four-bar linkage structure with right-circular flexure hinge was developed. The positioning performance of a single axis nanopositioner and a XY nanopositioner which was extended from single axis one were demonstrated using control experiments. Consequently, it was shown that the developed single axis nanopositioner possessed high performance and could be extended to various multi-axis nanopositioners.

볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어 (Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw)

  • 최형식;박용헌;정경식;이호식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

Stairs Adaptable Wheeled Mobile Robotusing Passive Linkage Mechanism

  • Woo, Chun-Kyu;Kim, Soo-Hyun;Kwak, Yoon-Keun;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.30.3-30
    • /
    • 2001
  • In this paper, we designed the 6-wheeled mobile robot (6-WMR) with the passive linkage mechanism which enables 6-WMR to passively adapt to the given stairs. To overcome the limit of adaptability to the terrain of conventional WMR and improve the energy efficiency, we proposed the new WMR using the passive linkage mechanism. The passive linkage mechanism consists of the simple four-bar linkage mechanism which allows 6-WMR to climb stairs with adaptability and an additional link which is connected to the four-bar linkage mechanism by a pin-slot joint to enable 6-WMR to passively go up the stairs. We made a miniature model of the proposed 6-WMR ...

  • PDF

가스 스프링을 이용한 높이조절 벙커침대 설계 (Design of a Height Adjustable Bunker Bed Using a Gas Spring)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어 (Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw)

  • 최형식;김영식;전대원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

유전자 알고리즘을 이용한 새로운 무릎 보장구의 최적 설계 (Optimal Design of a Novel Knee Orthosis using a Genetic Algorism)

  • 표상훈;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1021-1028
    • /
    • 2011
  • The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.

국립재활원 외골격 로봇(NREX)의 손 모듈 개발 (Development of Robotic Hand Module of NRC Exoskeleton Robot (NREX))

  • 송준용;송원경
    • 로봇학회논문지
    • /
    • 제10권3호
    • /
    • pp.162-170
    • /
    • 2015
  • This paper describes the development of a hand module of NREX (National Rehabilitation Center Robotic Exoskeleton) designed to assist individuals with sustained neurological impairments such as stroke and spinal cord injuries. To construct a simple and lightweight hand module, the robotic hand adopts a mechanism driven by a motor and moved by two four-bar linkages. The motor facilitates the flexion-extension movements of the thumb and the other four fingers simultaneously. Thus, an individual using the robotic hand module can effectively grip and release objects related to daily life activities. The robotic hand module has been designed to cover the range of motion with respect to its link distance. This hand module can be used in therapeutic rehabilitation as well as for daily life assistance. In addition, this hand module can either be mounted on an NREX or used as a standalone module.

유압 구동계 에너지 재생 브레이크를 적용한 자동차 테일게이트 개폐장치에 대한 동특성 해석 (Dynamic Analysis on the Tail Gate System for Vehicle with the Energy Regenerative Brake of Hydraulic Driven Systems)

  • 최순우;허준영
    • 유공압시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.19-26
    • /
    • 2010
  • The typical trunk lid system for vehicle is composed of a hinge having 4-bar link and gas lifter. Here, the energy regenerative brake of hydraulic driven systems is applied to the tail gate system for vehicle and removed the gas lifter. The new tail gate system is composed of a hydraulic pump by electric motor, a hydraulic motor, four check valves, an accumulator, a relief valve and a directional control valve. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action. The capacity selection method of accumulator by mathematical model is based upon trial and error approach and computer simulation by AMEsim software is carried out.

  • PDF