• Title/Summary/Keyword: Four electrode

Search Result 275, Processing Time 0.018 seconds

Electrochemical Properties of Pentadentate Binucleated Schiff Base Cobalt(Ⅱ) and Manganese(Ⅱ) Complexes in Nonaqueous Solvent (비수용매에서 이핵성 다섯자리 Schiff Base Cobalt(Ⅱ) 및 Manganese(Ⅱ) 착물들의 전기화학적 성질)

  • Ki-Hyung Chjo;Yong-Kook Choi;Song-Ju Lee;Seong-Seop Seo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.428-441
    • /
    • 1992
  • We synthesized a series of binuclear pentadentate Schiff base complexes such as $Co(Ⅱ)_2$ (BSPP)($H_2O)_2$, $Co(Ⅱ)_2$ (BSPD)($H_2O)_2$, $Mn(Ⅱ)_2$ (BSPP)($H_2O)_2$ and $Mn(Ⅱ)_2$ (BSPD)($H_2O)_2$, mononuclear pentadentate Schiff base complexes such as Co(Ⅱ)(BSP)($H_2O)$ and Mn(Ⅱ)(BSP)($H_2O)$. The composition of these complexes identified by IR, UV-visible spectrum, T.G.A., DSC, and elemental analysis. The electrochemical redox processes have been examined by cyclic voltammetry and differential pulse polarography with glassy carbon electrode in 0.1M TEAP-Py(-DMSO and -DMF) as a supporting electrolyte solution. As a result of electrochemical measurements, the reduction processes for pentadentate binuclear Schiff base cobalt(Ⅱ) and manganese(Ⅱ) complexes occurred to four steps in $M(Ⅲ)_2$ / $Mn(Ⅱ)_2$ and $Mn(Ⅱ)_2$ / $M(Ⅰ)_2$ (M; Co, Mn) two processes through each two reduction steps with one electron, by contrast, the mononuclear pentadentate Schiff base cobalt(Ⅱ) and manganese(Ⅱ) complexes occurred to two steps in M(Ⅲ) / M(Ⅱ) and M(Ⅱ) / M(Ⅰ) (M; Co, Mn) two processes with one electron reduction steps.

  • PDF

Polarograms of Uranium(VI) and Rare Earth(III) Metal Complexes with Macrocyclic Ligands in Dimethylsulfoxide Solvent (디메틸술폭시드 용매중에서 거대고리리간드를 포함한 우라늄(VI)과 희토류(III) 금속 착물의 폴라로그램)

  • Hak Jin Jung;Oh Jin Jung;Chilnam Choi
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.233-242
    • /
    • 1988
  • The uranium(VI) complexes with new unsaturated macrocyclic ligands of cryptand types and the neodymium(III) complexes with cryptand 222 and DBC ligands have been investigated polarographically in dimethylsulfoxide solvent. The reduction states, electron numbers involved in the reduction process, effects of the added acid on the polarograms of complexes, and the mechanisms of the reduction electrode reactions have been examined. The stability constants and mole-ratio of new complexes were also obtained by polarographic method. The reaction of ligands was controlled by the diffusion in the reduction with four electrons at a step, whereas the redox reaction with six electrons at three steps in $UO_2\;^{2+}$ complexes with macrocyclic ligands and the redox reaction with one electron at a step in $Nd^{3+}$ complexes with cryptand 222 and DBC have been observed. The imine ligands formed stable complexes with uranium(VI) above pH 7.0, and the neodymium(III) complexes with cryptand 222 and DBC ligands were stable above pH 4.0.

  • PDF

The Influence of Participation of Physical Activity in Adolescence and Senescence Adults on Affective Cognition (청년기·노년기 성인의 신체활동 참여가 정서인지에 미치는 영향)

  • Yoon, Byungtak;Ryu, Kwangmin;Kim, Jingu
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.41-54
    • /
    • 2017
  • Physical activity has positive effects on cognitive functions by aging. However, it is rare to find research that have scientifically investigated the effects on the affective-cognitive function. Thus, this study aims to brain-scientifically research its effects of physical activity on the affective-cognitive function of adults in adolescence and senescence. As subjects of this study, a total of 60 males adults in D region were selected, and then equally divided into four groups of young exercise group(25~35y/o), young non-exercise group(26~35y/o), old exercise group(60~70y/o), and old non-exercise group(60~70y/o). As experiment tools, the EEG measuring equipment and International Affective Picture System(IAPS) were used. The experiment of this study used an affective-cognitive task where subjects pressed a button depending on emotional valence(positive, neutral, negative) shown in the pictures. During the task, EEG measured eight areas(Fp1, Fp2, Fz, C3, C4, Cz, T3, T4) out of brain areas in accordance with the international 10-20 electrode system, EEG was measured. For statistical analysis, a three-way ANOVA on $4(group){\times}3(stimulus){\times}8(area)$ was conducted. The results showed main effects of group in both reaction time and accuracy, and also in the latency of P3. And there was an interaction between group and stimulus the amplitude of P3. In conclusion, Physical activity has positive effects on the affective-cognitive function of people in adolescence and senescence.

Synthesis of Transition Metal Cu(II) Complexes and Their Electrochemical Properties (Cu(II) 전이금속 착물의 합성과 전기화학적 성질에 관한 연구)

  • Chae, Hee-nam;Choi, Yong-kook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.719-725
    • /
    • 1998
  • Tridentate Schiff base ligands were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. And then Cu(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Cu(II) complexes were contemplated to be four-coordinated square planar configuration containing one water molecule. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Cu(II) complexes was quasi-reversible and diffusion-controlled as one electron by one step process Cu(II)/Cu(I). The reduction potentials of the Cu(II) complexes shifted in the positive direction in the order of [Cu(II)(HNIPC)($H_2O$)]>[Cu(II)(HNIP)($H_2O$)]>[Cu(II)(SIP)($H_2O$)]>[Cu(II)(SIPC)($H_2O$)].

  • PDF

Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I) (비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보))

  • Ki-Hyung Chjo;Yong-Kook Choi;Sang-Bock Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.261-272
    • /
    • 1992
  • Tetradentate Schiff base Cobalt(II)(3MeOSED)$(H_2O)_2$ complexe was synthesized and allowed to react with dry oxygen to form oxygen adducts of Cobalt(III) complexes such as ${\mu}$-peroxo type [Co(III)(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$in DMF and DMSO or superoxo type [Co(III)(3MeOSED)(Py)]$O_2$ in pyridine. The oxygen adducted complex was investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMF (-DMSO,-Py) as supporting electrolyte solution. As a result the reduction reaction process occurred to four steps including prewave Of $O_2^-$in 1 : 1 oxygen adducted superoxo type [Co(III)(3MeOSED)(Py)]$O_2$complex and three steps not including prewave of $O_2^-$ in 1 : 2 oxygen adducted ${\mu}$-peroxo type [Co(III)-(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$. A superoxo type [Co(III)(3MeOSED)(L)]$O_2\;(L: CH_3OH)$ was generated with oxygen in methanol. Selectively oxidized hydrazobenzene $(H_2AB)$ to trans-azobenzene(t-AB) and the rate constant k for oxidation reaction of the following equation is $(2.96 {\pm} 0.2)$${\times}$ $10^{-1}$M/sec. $H_2AB$ + Co (II)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF