• Title/Summary/Keyword: Four Stability Criteria

Search Result 34, Processing Time 0.03 seconds

Hot Workability Characterization of Ti Alloys Using Dynamic Material Model (동적재료모델을 활용한 티타늄합금의 고온성형성 고찰)

  • Yeom J. T.;Hyun Y. T.;Na Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.301-304
    • /
    • 2001
  • Hot-compression tests were carried out to investigate the hot workability of Ti64 and Ti6246 alloys at different temperatures and strain rates. Processing maps were developed on the basis of the dynamic material model unifying the relationship among constitutive behavior, hot workability and microstructure development. Stable regions, defined on the basis of four stability criteria 0${\delta}log(m)/\frac{\bot}{\varepsilon})<0$, s<1 and ${\delta}log(s)/\frac{\bot}{\varepsilon})<0$, were found to be associated with dynamic recovery and recrystallization.

  • PDF

Experimental studies of validation and stability of Sweet Bee Venom using HPLC (Sweet BV의 조제물 농도분석 및 안정성 확인을 위한 시험적 연구)

  • Kang, Kye-Sung;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.12 no.4
    • /
    • pp.33-50
    • /
    • 2009
  • Objectives : This study was conducted to confirm validation and stability of concentration analysis method of pure melittin (Sweet Bee Venom-Sweet BV) extracted from the bee venom by utilizing protein isolation method of gel filtration. Methods : All experiments were conducted at Biotoxtech, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP). Standard solutions of melittin (SIGMA, USA) and test substances were dispensed and were analyzed with HPLC for Sweet BV to secure the validation of analysis. Results : 1. Measurement of system suitability of Sweet BV satisfied criterion of below 3%. 2. Confirming Linearity of Sweet BV in 10-200${\mu}g/m\ell$ solution yielded correlation coefficient (r) of 0.995 and accuracy of 85-115% which satisfy criterion. 3. Measurement of Specificity of Sweet BV didn't yield any substance affecting the peak of test substances, but detected at 21.22min verified as the test substance. 4. Confirming Intra-day of Sweet BV, accuracy and precision of 0.1, 100${\mu}g/m\ell$ were 105.70, 95.81 and 0.66, 0.73, respectively, satisfying both criteria of accuracy (85-115%) and precision (within 10%). 5. To measure Stability in autosampler, all samples used in Intra-day reproducibility sat in the autosampler for five hours and were re-analyzed. Both variability and precision satisfied the criteria. 6. Homogeneity of Sweet BV (0.1, 100${\mu}g/m\ell$) at upper, middle, and lower layers all satisfied the accuracy and precision criteria. 7. Stability of Sweet BV (0.1, 100${\mu}g/m\ell$) at room temperature for four hours and refrigerated for 7 days all satisfied the criterion. 8. For the measurement of Quality control, QC samples measured on the first and eighth day all satisfied accuracy and precision criteria. Conclusion : Above experiment data satisfies validation and stability of concentration analysis method of Sweet BV.

Latent Profile Analysis According to the Subject Selection Criteria of General High School Students

  • Kim, Eun-Mi
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • The purpose of this study is to analyze the type of latent profile for general high school students' subject selection criteria and to identify the characteristics of the latent class. The survey data of 1072 general high school students (male; 648, female; 424) in G city, Jeollabuk-do and the scale composed of 8 sub-factors: 'SAT orientation', 'academic achievement', 'ability orientation', 'pursuit of interest', 'teacher orientation', 'career development', 'others' recommendation', and 'subject availability' were used for latent profile analysis and cross-analysis between potential layers. As a result of the analysis, high school students' perceptions of subject selection were classified into four latent profiles. The four groups were named 'High Perception Type', 'Low Perception Type', 'Self-Directed Type', and 'Stability-Oriented Type' according to their types. It was found that there was a difference between the latent classes in the importance and performance level of the subject selection criteria. These results can help identify the subject selection tendencies of latent groups in the operation of the 2015 revised curriculum and the 2025 high school credit system that emphasizes the student-centered course selection curriculum and they can also provide customized course selection guidance considering individual differences.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing

  • Verma, Mohit;Rajasankar, J.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1325-1348
    • /
    • 2015
  • Real-time hybrid testing (RTHT) involves virtual splitting of the structure into two parts: physical substructure that contains the key region of interest which is tested in a laboratory and numerical substructure that contains the remaining part of the structure in the form of a numerical model. This paper numerically assesses four step-by-step integration methods (Central difference method (CDM), Operator splitting method (OSM), Rosenbrock based method (RBM) and CR-integration method (CR)) which are widely used in RTHT. The methods have been assessed in terms of stability and accuracy for various realistic damping ratios of the physical substructure. The stability is assessed in terms of the spectral radii of the amplification matrix while the accuracy in terms of numerical damping and period distortion. In order to evaluate the performance of the methods, five carefully chosen examples have been studied - undamped SDOF, damped SDOF, instantaneous softening, instantaneous hardening and hysteretic system. The performance of the methods is measured in terms of a non-dimensional error index for displacement and velocity. Based on the error indices, it is observed that OSM and RBM are robust and performs fairly well in all the cases. CDM performed well for undamped SDOF system. CR method can be used for the system showing softening behaviour. The error indices indicate that accuracy of OSM is more than other method in case of hysteretic system. The accuracy of the results obtained through time integration methods for different damping ratios of the physical substructure is addressed in the present study. In the presence of a number of integration methods, it is preferable to have criteria for the selection of the time integration scheme. As such criteria are not available presently, this paper attempts to fill this gap by numerically assessing the four commonly used step-by-step methods.

The Effect of Changes in Young Women's Static Balance after Performing Walking Task with Different Carrying Bag Positions (젊은 성인 여성의 휴대 가방 위치가 보행 후 정적 균형 변화에 미치는 영향)

  • Kim, Jin-Seop;Kim, Kyoung;Jun, Deok-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Purpose : This study was designed to identify the effects of carrying bag positions (None, left hand, right hand, left shoulder, right shoulder) on static balance. Methods : Fourteen healthy adult females participated in the this study. The exclusion criteria were orthopedic or neurologic disease, predominant left side. Measurements were performed initial effects. Results were evaluated by OSI, APSI, and MLSI in the biodex stability system. Results : There are among the three assessments (overall stability index(OSI), antero-posterior stability index (APSI), medio-lateral stability index(MLSI) significants difference for the carrying bags positions (None bag, left hand, right hand, left shoulder, right shoulder)(p<.05). The post-hoc test revealed a significant difference between none bag and both left hand and left shoulder in the OSI, APSI, MLSI (p<.05). Also, comparing the carrying positions significant difference between right hand and both left hand and left shoulder in the MLSI (p<.05). Conclusion : The results suggest that none dominant side with carrying bag improve more imbalance than none bag and right hand of dominant with carrying bag improve more balance than non dominant side. When comparing the four carrying bag conditions, right hand was more effective than another conditions in static balance.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

A Study on the Optimal Solution for the Manipulation of a Robot with Four Limbs (4지 로봇의 최적 머니퓰레이션에 관한 연구)

  • Lee, Ji Young;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1231-1239
    • /
    • 2015
  • We developed a robot that has four limbs, each of which has the same kinematic structure and has 6 degrees of freedom. The robot is 600mm high and weighs 4.3kg. The robot can perform walking and manipulating task by using the four limbs selectively. The robot has three walking patterns. The first one is biped walking, which uses two rear limbs as legs and two front limbs as arms. The second one is biped walking with supporting arms, which is basically biped walking but uses two arms as supporting legs for increasing stability of the robot. The last one is quadruped walking, which uses all the four limbs as legs. When a task for the robot is given, the robot approaches the task point by selecting an appropriate walking pattern among three walking patterns and performs the task. The robot has many degrees of freedom and is a redundant system for a three dimensional task. We propose a redundancy resolution method, in which the robot’s translational move to the task point is modeled as a prismatic joint and optimal solutions are obtained by optimizing some performance criteria. Several simulations are performed for the validity of the proposed method.

Technology Improvement Assessment of Gas Hydrate R&D Project using Analytic Network Process (네트워크 분석과정을 적용한 가스하이드레이트 개발 사업의 기술향상도 평가)

  • Song, Sueng-GGock;Heo, Eunng-Yung;Lee, You-Ah
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.1
    • /
    • pp.60-84
    • /
    • 2011
  • This study accomplished technology improvement assessment of Gashydrate R&D project using ANP method which can deal with the sophisticated decisions involving a variety of interactions and dependencies. Criteria were selected by consultation and questionnaires with experts in four technology parts of gas hydrate project, and then the network was formed from relation with criteria and alternatives. As the result of analysis, the weight matrix was derived and the various relation in the network was able to be verified. The analysis was accomplished with four technology parts - geophysical exploration technology, geological and geochemical technology, analysis of deep-drill cores and stability technology, production technology - and the 'reliability' criterion ranked the highest of all parts. The rank of other criteria and the result of technology improvement assessment reflected the level of each technology. Thus, the result of this study will contribute to policy decision-making for developing and evaluating gas hydrate technology and other R&D projects.

  • PDF

Estimating the Natural Cubic Spline Volatilities of the ASEAN-5 Exchange Rates

  • LAIPAPORN, Jetsada;TONGKUMCHUM, Phattrawan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • This study examines the dynamic pattern of the exchange rate volatilities of the ASEAN-5 currencies from January 2006 to August 2020. The exchange rates applied in this study comprise bilateral and effective exchange rates in order to investigate the influence of the US dollar on the stability of the ASEAN-5 currencies. Since a volatility model employed in this study is a natural cubic spline volatility model, the Monte Carlo simulation is consequently conducted to determine an appropriate criterion to select a number of quantile knots for this model. The simulation results reveal that, among four candidate criteria, Generalized Cross-Validation is a suitable criterion for modeling the ASEAN-5 exchange rate volatilities. The estimated volatilities showed the inconstant dynamic patterns reflecting the uncertain exchange rate risk arising in international transactions. The bilateral exchange rate volatilities of the ASEAN-5 currencies to the US dollar are more variable than their corresponding effective exchange rate volatilities, indicating the influence of the US dollar on the stability of the ASEAN-5 currencies. The findings of this study suggest that the natural cubic spline volatility model with the quantile knots selected by Generalized Cross-Validation is practical and can be used to examine the dynamic patterns of the financial volatility.