• Title/Summary/Keyword: Foundation structure

Search Result 1,440, Processing Time 0.043 seconds

Numerical Analysis of the Mechanical Impedance and Transmitted Vibration of the Foundation for the Equipment in a Naval Vessel (수치해석을 이용한 함정용 장비 받침대의 기계적 임피던스 및 전달 진동 분석)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.462-467
    • /
    • 2009
  • Reduction of the structure-borne noise of the naval vessel is very important in order to reduce the underwater radiated noise of it. One of the important factors to reduce the structure-borne noise of the installed machine in a ship is the design of the foundation having sufficiently high mechanical impedance. In this paper, the mechanical impedance of the foundation for the fan-coil unit in a naval vessel is evaluated numerically according to variation of the thickness of the foundation. And also, the forced vibration analysis is conducted considering the dynamic property of the anti-vibration mount. Through the analysis results, it can be known that the dynamic property of the anti-vibration mount should be considered when the minimum level of the mechanical impedance of the foundation is set.

A Study on the Effect of the Construction Conditions on a Thermal Crack of Mat Foundation (매트기초의 온도균열에 미치는 시공조건의 영향에 관한 연구)

  • Lee, Do-Bum;Kim, Hyo-Rak;Choi, Il-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.1-4
    • /
    • 2003
  • Recently, a structure has been larger and higher under the improvement of construction technique. So, a concrete constructions that a mat foundation thickness of structure is over 80cm have been many. Also, because of the reason high strength concrete, the matter of thermal crack have become an important task to be solved absolutely. In a cause a thermal crack occurrence, there used, mixture of concrete, construction and so forth. In this study, we executed temperature and stress analysis of mat foundation to know the effect the construction condition a thermal crack of mat foundation. And we evaluated quantitatively about the occurrence possibility of thermal crack using the hydration heat analysis program. By using of this analysis technique, will can control skilfully the quality of a mat foundation in advance.

  • PDF

An Experimental Study on the Impedance of the Machinery Foundation and the Cabin Noise in Cruise Ship (여객선 객실소음과 장비 받침대 임피던스에 관한 실험적 연구)

  • Kim, Kuk-Su;Kim, Nho-Seong;Rhee, Wook;Kwak, Dong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.513-518
    • /
    • 2011
  • In cruise ships, it is inevitable to arrange the cabins near by the noisy areas, such as ventilation fan, HVAC machinery and funnel casing etc. The noise is propagated to the cabins by way of mount, foundation and deck. The transmitted noise to cabin is affected by mount and foundation structure. It is well-known that most of the structure-borne noise can be reduced by the flexible mount. However, when the foundation of machinery is designed inappropriately, it can make noise problems in cabins. In this paper, the effect of foundation on noise reduction is studied through the numerical analysis and mock up test. The dynamic performance of foundation is investigated from the viewpoint of the impedance and noise reduction in cabin.

  • PDF

A Study on the Effect of the Construction Conditions on a Thermal Crack of Mat Foundation (매트기초의 온도균열에 미치는 시공조건의 영향에 관한 연구)

  • 이도범;김효락;최일호
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.1-4
    • /
    • 2003
  • Recently, a structure has been larger and higher under the improvement of construction technique. So, a mass concrete constructions that a mat foundation thickness of structure is over 80cm have been many. Also, because of the reason of high strength of concrete, the matter of thermal crack have become an important task to be solved absolutely. tn a cause of a thermal crack occurrence, there are material used, mixture of concrete, construction condition and so forth. In this study, we executed temperature and stress analysis of mat foundation to know the effect of the construction condition on a thermal crack of mat foundation. And we evaluated quantitatively about the occurrence possibility of thermal crack using the hydration heat analysis program. By using of this analysis technique, we will can control skilfully the quality of a mat foundation in advance.

  • PDF

Vibration analysis of steel frames with semi-rigid connections on an elastic foundation

  • Vu, Anh Q.;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.265-280
    • /
    • 2008
  • An investigation on the combined effect of foundation type, foundation flexibility, axial load and PR (semi-rigid) connections on the natural frequencies of steel frames is presented. These effects were investigated using a suitable modified FE program for cases where the foundation flexibility, foundation connectivity, and semi-rigid connections could be treated as equivalent linear springs. The effect of axial load on the natural frequency of a structure was found to be significant for slender structures subjected to high axial loads. In general, if columns of medium slenderness are designed without consideration of axial load effects, the frequency of the structure will be overestimated. Studies on the 3-story Los Angeles PR SAC frame indicate that the assumption of rigid connections at beam-column and column-base interfaces, as well as the assumption of a rigid foundation, can lead to significant errors if simplified design procedures are used. These errors in an equivalent static analysis are expected to lead to even more serious problems when considering the effect of higher modes under a non-linear dynamic analysis.

Vibration Analysis of Stiffened Thick Plate Subjected to Static Inplane Stress Using Finite Element Method (면내응력을 받는 보강 후판의 유한요소법에 의한 진동해석)

  • 오숙경;김일중;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.952-956
    • /
    • 2004
  • The soil-structure interactions are caused by the point sources of explosions, deriving piles, compaction of foundations and excavations those are frequently arose in the construction sites. Thus the analysis of soil-structure interactions is one of the most important subjects in the fields of dynamic analysis and vibration control. From this viewpoint, the aim of this study is to collect the basic data for designing foundation structures throughout understanding the dynamic structural behavior, which is embodied by the dynamic analysis of soil-structure systems. In this study, the dynamic analyses of stiffened thick plates subjected to in-plane stress on elastic foundations are carried out. The foundation is modeled as Pasternak foundation that includes the continuity effect of foundations. Also both the Mindlin plate theory and Timoshenko beam-column theory are used for analyzing the thick plates and beams, respectively.

  • PDF

Evaluation of the influence of interface elements for structure - isolated footing - soil interaction analysis

  • Rajashekhar Swamy, H.M.;Krishnamoorthy, A.;Prabakhara, D.L.;Bhavikatti, S.S.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.65-83
    • /
    • 2011
  • In this study, two extreme cases of compatibility of the horizontal displacements between the foundation and soil are considered, for which the pressure and settlements of the isolated footings and member end actions in structural elements are obtained using the three dimensional models and numerical experiments. The first case considered is complete slip between foundation and soil, termed as the un-coupled analysis. In the second case of analysis, termed as the coupled analysis, complete welding is assumed of joints between the foundation and soil elements. The model and the corresponding computer program developed simulate these two extreme states of compatibility giving insight into the variation of horizontal displacements and horizontal stresses and their intricacies, for evaluation of the influence of using the interface elements in soil-structure interaction analysis of three dimensional multiscale structures supported by isolated footings.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

Experimental Modal Analysis for Damage Identification in Foundation-Structure Interface of Caisson-type Breakwater (케이슨식 방파제 지반-구조 경계부 손상식별을 위한 실험적 모드분석)

  • Lee, So-Young;Lee, So-Ra;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • This paper presents an experimental modal analysis of a caisson-type breakwater to produce basic information for the structural health assessment of a caisson structure. To achieve the objective, the following approaches are implemented. First, modal analysis methods are selected to examine the modal characteristics of a caisson structure. Second, experimental modal analyses are performed using finite element analyses and lab-scale model tests. Third, damage scenarios that include several damage levels in a foundation-structure interface are designed. Finally, the effects of damage on the modal characteristics are analyzed for the purpose of utilizing them for damage identification.

Stability Analysis of Marine Structure Foundation Constructed by Deep Mortar Piles (심층몰탈파일로 조성된 항만구조물 기초의 안정성 검토)

  • 천병식;여유현;김경민;양진석;김도식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.228-233
    • /
    • 2001
  • In this case study, under conideration of field situations, such as increase of water level, height increment of the marine structure, dredging and backfill, the stability analysis of sliding and lateral flow of the marine structure in OOOharbor was carried out, and foundation reinforcement methods was presented. based on the results of site investigation, the stability analysis of slope sliding and lateral flow was performed as following. In section BH-1, 2, the analysis was performed in two cases that the marine structure was heightened and filled, and not heightened and filled. In section BH-1, 4, heightened and filled. The analysis results showed that the stabilities of slope sliding and lateral flow in section BH-1, 2, 3, 4 were unstable. After additional reinforcements with Deep Mortar Pile, the stabilities in section BH-1, 2, 3, 4 were evaluated as efficiently large.

  • PDF