• 제목/요약/키워드: Foundation model

검색결과 2,271건 처리시간 0.036초

Applied methods for seismic assessment of scoured bridges: a review with case studies

  • Guo, Xuan;Badroddin, Mostafa;Chen, ZhiQiang
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.497-507
    • /
    • 2017
  • Flooding induced scour has been long recognized as a major hazard to river-crossing bridges. Many studies in recent years have attempted to evaluate the effects of scour on the seismic performance of bridges, and probabilistic frameworks are usually adopted. However, direct and straightforward insight about how foundation scour affects bridges as a type of soil-foundation-structure system is usually understated. In this paper, we provide a comprehensive review of applied methods centering around seismic assessment of scoured bridges considering soil-foundation-structure interaction. When introducing these applied analysis and modeling methods, a simple bridge model is provided to demonstrate the use of these methods as a case study. Particularly, we propose the use of nonlinear modal pushover analysis as a rapid technique to model scoured bridge systems, and numerical validation and application of this procedure are given using the simple bridge model. All methods reviewed in this paper can serve as baseline components for performing probabilistic vulnerability or risk assessment for any river-crossing bridge system subject to flood-induced scour and earthquakes.

외국의 건강증진기금 운영실태 고찰 및 시사점 (The Review of the Health Promotion Foundation and Implication for Korea)

  • 정애숙
    • 보건교육건강증진학회지
    • /
    • 제25권4호
    • /
    • pp.93-110
    • /
    • 2008
  • Objectives: The study aimed at reviewing the organizational values, structures, and activities of the health promotion foundation model as a recently recommended by the World Health Organization, and exploring adequate suggestions to administer the funds in Korea. Methods: The study materials were collected from web-sites and visiting, the ThaiHealth, VicHealth, Healthway, and Health Promotion Switzerland were reviewed as the representative cases of health promotion foundation model. Results: According to the review, the health promotion foundation established based on relevant legal acts had the comprehensive and professional organizational structure with boards and committees as governing and supporting bodies. The foundations had clearly defined vision, mission, and purpose, and pursuit health promotion purpose, independent and professional decision making process, strategies and priorities to initiate broad health promotion activities, balanced funds distribution to various areas and sectors, and networking and collaborating with partners. Conclusions: Health promotion foundation is a recommendable model to lead more effective and efficient health promotion activities and to collaborate with other sectors or other countries. Expanded usages of health promotion fund into the diverse health promotion settings such as communities, work places and schools and health activities including sponsorships as well as health promotion programs need to be considered.

사영에 의한 반무한지반의 비선형해석 (A Method for Nonlinear Dynamic Response Analysis of Semi-infinite Foundation Using Mapping)

  • 이춘길
    • 한국지반공학회논문집
    • /
    • 제22권4호
    • /
    • pp.5-10
    • /
    • 2006
  • 반무한 영역을 유한영역에 사영한 다음 반무한지반의 비선형동적응답해석에 대한 특수한 유한 차분법을 제안하였다. 해석대상의 주요 부분은 동일 길이로 하고, 주변은 축소, 사영함으로서 무한영역을 유한영역으로 변환 후 차분하였다. 우선 반무한 지반의 선형모델의 응답으로서 계산값과 이론값의 결과를 비교하였다. 선형모델에 대한 제안법의 계산결과는 Lamb의 해석결과와 양호하게 일치했다. 또 간단한 모델에 의한 선형, 비선형해석도 소규모 mesh에 의한 응답결과와 대규모 mesh에 의한 응답결과는 일치하고 제안법의 유효성을 나타내었다.

모래지반에서 도넛형 석션기초의 관입 성능 평가를 위한 수치해석 기법에 대한 연구 (Study on Numerical Analysis for Penetration Performance Evaluation of Doughnut-Type Suction Foundation in Sand Layer)

  • 박해용;권오순;한인숙;강현
    • 풍력에너지저널
    • /
    • 제13권4호
    • /
    • pp.70-79
    • /
    • 2022
  • It is difficult to control differential settlement and long-term settlement on soft ground with the template used in the pre-filing method of offshore wind power. In this study, the template adopted a suction foundation with high utility on soft ground. To analyze the penetration performance of the doughnut-type suction foundation, step-by-step numerical analysis was applied by calculating the minimum suction pressure needed for ground penetration at that depth. Scale model tests were performed and compared with the numerical analysis results. The ratio of the inside diameter compared to the outside diameter is higher, and penetration by suction was more advantageous than push-in load penetration. The step-by-step numerical analysis method showed an error within 2 % compared to the model tests, so the numerical analysis method confirmed results that the penetration performance of the doughnut-type suction foundation is valid.

파운데이션 필드버스에서 두 개의 우선순위 데이터를 갖는 노드의 데이터 전송지연시간에 관한 연구 (Study on the Transmission Delay of Two Priority Classes in One Node in the Foundation Fieldbus)

  • 이용희;홍승호
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.407-414
    • /
    • 2009
  • The foundation fieldbus(FF) is one of the fieldbuses most widely used for process control and automation, In order for system designer to optimize medium management, it is imperative to predict transmission delay time of data. In a former research, mathematical modeling to analyze transmission delay of FF token-passing system has been developed based on the assumption that a device node has only one priority data(1Q model), From 1Q model, all of the device nodes, which are connected on the FF system, are defined priority level in advance, and as system operates, data are generated based on given priority level. However, in practice, some non-periodic data can have different priority levels from one device. Therefore, new mathematical model is necessary for the case where different priority levels of data are created under one device node(2Q model). In this research, the mathematical model for 2Q model is developed using the equivalent queue model. Furthermore, the characteristics of transmission delay of 2Q model which is presented in this paper were compared with 1Q model. The validity of the analytical model was verified by using a simulation experiment.

Probabilistic seismic assessment of structures considering soil uncertainties

  • Hamidpour, Sara;Soltani, Masoud;Shabdin, Mojtaba
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.165-175
    • /
    • 2017
  • This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full probabilistic analysis methods like MC commonly are very time consuming, the feasibility of simple approximate methods' application including First Order Second Moment (FOSM) method and ASCE41 proposed approach for the soil uncertainty considerations is investigated. By comparing the results of the approximate methods with the results obtained from MC, it's observed that the results of both FOSM and ASCE41 methods are in good agreement with the results of MC simulation technique and they show acceptable accuracy in predicting the response variability.

Calculation models and stability of composite foundation treated with compaction piles

  • Cheng, Xuansheng;Jing, Wei
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.929-946
    • /
    • 2017
  • Composite foundation treated with compaction piles can eliminate collapsibility and improve the bearing capacity of foundation in loess area. However, the large number of piles in the composite foundation leads to difficulties in the analysis of such type of engineering works. This paper proposes two simplified methods to quantify the stability of composite foundation treated with a large number of compaction piles. The first method is based on the principle of making the area replacement ratios of the simplified model as the same time as the practical engineering situation. Then, discrete piles arranged in a triangular shape can be simplified in the model where the annular piles and compacted soil are arranged alternately. The second method implements equivalent continuous treatment in the pile-soil area and makes the whole treated region equivalent to a type of composite material. Both methods have been verified using treated foundation of an oil storage tank. The results have shown that the differences in the settlement values obtained from the water filled test in the field and those calculated by the two simplified methods are negligible. Using stability analysis, the difference ratios of the static and dynamic safety factors of the composite foundation treated with compaction piles calculated by these two simplified methods are found to be 3.56% and 5.32%, respectively. At the same time, both static and dynamic safety factors are larger than the general safety factor, which should be greater than or equal to 2.0 according to the provisions in civil engineering. This indicates that after being treated with compaction piles, the bearing capacity of the composite foundation is effectively improved and the foundation has enough safety reserve.

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

석회암공동 상부 기초의 안정성 검토를 위한 모형실험 연구 (Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests)

  • 김종우;허석
    • 터널과지하공간
    • /
    • 제26권6호
    • /
    • pp.493-507
    • /
    • 2016
  • 본 연구에서는 축소모형실험을 통해 석회암 공동 상부에 존재하는 구조물 기초의 안정성을 검토하였다. 공동의 형상은 단축장축비율 1/3인 타원형으로 가정하고, 공동의 심도, 위치, 경사, 크기, 개수를 변화시킨 5가지 그룹, 12개 모형들을 실험하였다. 실험결과로서 모형별 균열개시압력, 최대압력, 변형거동, 파괴양상, 침하곡선을 구하였으며, 공동의 제반 조건들이 기초의 안정성에 어떠한 영향을 미치는지를 알아보았다. 무공동 모형은 전단파괴를 보였으나, 공동 포함 모형들은 관입파괴만 발생한 경우, 전단파괴와 관입파괴가 함께 발생한 경우, 전단파괴가 이중으로 발생한 경우 등의 다소 복잡한 파괴형식을 보였다. 공동의 심도가 작을수록, 크기가 클수록, 개수가 많을수록 기초의 안정성은 감소하였다. 공동의 일부가 기초저면의 직하부에 놓일 때는 부등침하가 관찰되었고, 공동들의 분포상태에 따라 침하곡선은 다른 형태를 보였다.

기계기초의 지반동력학적 해석 (Soil Dynamics for Vibrating Machine Foundation)

  • 전준수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.3-25
    • /
    • 2003
  • In this presentation, soil dynamics for vibrating machine foundation is briefly stated, and the result of a model pile test is presented. Analystical methods used in solving for the stiffness and damping factor for pile-soil system are also treated and the results of the test and the calculated values are compared.

  • PDF