• Title/Summary/Keyword: Fouling surface

Search Result 279, Processing Time 0.026 seconds

Studies on Membrane Fouling Monitoring by Fluorescence Nano Particle and Fluorescent Spectrometry (형광 나노 입자 및 형광 분광 분석을 이용한 막오염 측정법 연구)

  • Seo, Mi-Rae;Nam, Mi-Yeon;Kim, Beom-Sik;Nam, Seung-Eun;Kim, In-Chul;Park, You-In
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Membrane fouling control in water treatment may be the main obstacle for wider implementation and lower cost. A novel fluorescent spectroscope sensor device for membrane fouling integrity monitoring has been developed and evaluated in this study. PSf membranes for water treatment has been fabricated with three types of organic fluorescent materials, OB, FP, KCB. The fluorescent signal from membrane surface was analyzed throughout the filtration process. It was found that the fluorescent signal due to the membrane fouling decreased and the developed device is reliable for membrane fouling monitoring.

Effect of coagaulation on ceramic microfiltration membrane fouling (응집공정이 세라믹 정밀여과막 파울링에 미치는 영향)

  • Hwang, Young Jin;Lim, Jae Lim;Choi, Young Jong;Wang, Chang Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.459-469
    • /
    • 2009
  • It is well known that coagulation pretreatment can reduce foulants prior to membrane filtration. The purpose of this research was to investigate the effects of coagulation on fouling of ceramic microfiltration membrane($0.1 {\mu}m$) using pilot plant of $150m^3/day/train$ capacity. Train A membrane system has pretreatment process of ozonation and coagulation while train B has only coagulation. Two types of coagulation operation were investigated: back mixer(rapid mixing with or without slow mixing) which is a conventional mechanically stirred mixer and an inline static mixer. Ozone dose rate for train A was 1 mg/L and ozone contact time was 12 min. The coagulation dose(PACl 10% as $Al_2O_3$) rate was changed 20~40 mg/L according to experimental schedule. In this experimental conditions, the coagulation of back mixer type with rapid mixing(GT=72,000) and slow mixing(GT=45,000) was the best effective in reduction of ceramic membrane fouling regardless preozonation. Especially, the effect of inline static mixer was sensitive to change in water quality. Ozonation mainly affected irreversible fouling rather than reversible fouling in accordance with less adsorption of NOM on the membrane surface. Thus, the increase rate of the nomalized TMP(trans membrane pressure) at $25^{\circ}C$ for train A was relatively lower than that of train B under same coagulation process with same coagulant dosage. The best performance of ceramic membrane appeared in case of combined process with ozonation, therefore this integrated process is able to archive less coagulant dosing and secure a stability of ceramic membrane system.

Effect of Step-aeration on Inorganic Particle Mixtures Filtration in a Submerged Hollow Fiber Microfiltration Membrane (침지식 중공사 정밀여과 분리막에서 무기혼합입자 여과에 대한 단계별 공기세정의 영향)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The goal is to compare two different aeration strategies for a pilot scale operation of submerged microfiltration with respect to the minimization of membrane fouling. A constant aeration (65 L/min) was examined parallel with a step-wise increase in airflow rate (40 to 65 L/min). The airflow rate was stepped to a higher rate every 5 min and the step-aeration cycles were repeated at regular intervals of 15 min. The comparative filtration runs were conducted with synthetic water containing powdered activated carbon (~10 g/L) and/or kaolin (~20 g/L) at a constant flux of 80 LMH. The extent and mechanisms of fouling in the microfiltration were identified by determining hydraulic resistance to filtration and the fouling reversibility after cleaning. Results showed that the step-aeration effectively alleviated fouling in the microfiltration of synthetic water compared to when using constant aeration. A substantial decrease in fouling was achieved by combining with coagulation using aluminum salts regardless of the aeration strategies. The constant aeration resulted in increased pore blocking likely due to increased accumulation of particles on the surface of membrane.

Study on the Fouling Reduction of the RO Membrane by the Coating with an Anionic Polymer (역삼투막 표면에 음이온 고분자 코팅을 통한 파울링 현상 감소연구)

  • Cho, Eun Hye;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.481-488
    • /
    • 2012
  • The anionic exchange polymer, poly(vinyl amine)(PVAm), was coated onto polyamide (PA) reverse osmosis (RO) membranes by using 'salting-out' method. The effects of the fouling phenomena for these PVAm coated membranes were investigated using the model foulants, bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA). The surface coating and the fouling phenomena were observed by the scanning electron microscopy. And the flux was measured for each 100 ppm of above foulant aqueous solution at the operating pressure, 2, 4, 8 bar. The PVAm-coated PA membranes showed somewhat fouling improvements and the fouling reduction was shown in the order of HA > SA > BSA, particularly HA case was distinct.

Investigation of Corrosion Fatigue Phenomena in Transient Zone and Preventive Coating and Blade Design against Fouling and Corrosive Environment for Mechanical Drive Turbines

  • Hata, Satoshi;Nagai, Naoyuki;Yasui, Toyoaki;Tsukamoto, Hiroshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.121-139
    • /
    • 2008
  • For mechanical drive steam turbines, the investigation results of corrosion fatigue phenomena in the transient zone are introduced, including basic phenomena on expansion line and actual design and damage experience. These results were analyzed from the standpoint of stress intensity during the start of cracking. In order to resolve such problems, preventive coating and blade design methods against fouling and corrosive environments are developed. Detailed evaluation test results are given for coating performance using a unique test procedure simulating fouling phenomena and washing conditions. Finally, the results of the successful modification of internals and on-line washing results on site are introduced.

Influence of feed water chemistry on the removal of ionisable and neutral trace organics by a loose nanofiltration membrane

  • Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.93-101
    • /
    • 2010
  • This study examined the effects of feed water chemistry and membrane fouling on the rejection of trace organics by a loose nanofiltration membrane. One ionisable and one non-ionisable trace organics were selected for investigation. Results reported here indicate that the solution pH and ionic strength can markedly influence the removal of the ionisable trace organic compound sulfamethoxazole. These observations were explained by electrostatic interactions between the solutes and the membrane surface and by the speciation of the ionisable compound. On the other hand, no appreciable effects of solution pH and ionic strength on the rejection of the neutral compound carbamazepine were observed in this study. In addition, membrane fouling has also been shown to exert some considerable impact on the rejection of trace organics. However, the underlying mechanisms remain somewhat unclear and are subject to on-going investigation.

Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater

  • Srisukphun, Thirdpong;Chiemchaisri, Chart;Chiemchaisri, Wilai;Thanuttamavong, Monthon
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • Membrane bioreactor (MBR) and reverse osmosis (RO) membrane system was applied to the treatment and reclamation of textile wastewater in Thailand. An experiment was carried out to determine the fouling behavior and effect of anti-scalant and biocide addition to flux decline and its recovery through chemical cleaning. The RO unit was operated for one month after which the fouled membranes were cleaned by sequential chemical cleaning method. RO flux was found rapidly declined during initial period and only slightly decreased further in long-term operation. The main foulants were organic compounds and thus sequential cleaning using alkaline solution followed by acid solution was found to be the most effective method. The provision of anti-scalant and biocide in feed-water could not prevent deposition of foulant on the membrane surface but helped improving the membrane cleaning efficiencies.

Cleaning agents efficiency in cleaning of polymeric and ceramic membranes fouled by natural organic matter

  • Urbanowska, Agnieszka;Kabsch-Korbutowicz, Malgorzata
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Ultrafiltration is known to be one of the most commonly applied techniques in water treatment. Membrane fouling is the main limiting factor in terms of process efficiency and restricting it to the manageable degree is crucial. Natural organic matter is often found to be a major foulant in surface waters. Among many known fouling prevention techniques, the membrane chemical cleaning is widely employed. This study focuses on evaluating the cleaning efficiency of polymeric and ceramic membranes with the use of various chemicals. The influence of cleaning agent type and its concentration, membrane material and its MWCO, and cleaning process duration on the recovery of membrane flux was analyzed. Results have shown that, regardless of membrane type and MWCO, the most effective cleaning agent was NaOH.

A Study on the Treatment of Pickled Radish Wastewater Using Surface-modified Membrane (표면개질 분리막을 이용한 단무지폐수 처리에 관한 연구)

  • Seon, Yong-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.64-78
    • /
    • 2011
  • Surface of hydrophobic polyethylene membrane was modified to become hydrophilic by ion beam irradiation. Submerged membrane filtration reactors contained pristine membrane or surface-modified membrane and the influent to reactors was pickled radish wastewater. The objectives of this study was to investigate the variation of flux and pressure and the characteristics of pollutant removal such as organics, suspended solids and nutrients with time. The result of experiments using intermittent pristine membrane showed the occurrence of severe fouling by increasing permeate pressure rapidly in case of pickled radish wastewater but in synthetic wastewater, this phenomenon was not occurred. In experiments of variation flux after chemical cleaning and water cleaning in pristine membrane, chemical cleaning must be necessary for renewals of pollutant membrane. Performance of intermittent operation is higher than that of continuous operation. Reaching fouling time in the case of surface-modified membrane is 6 times as long as pristine membrane. According this reason, replacement expense of surface-modified membrane could be 1/6 of that of pristine membrane. Effluent from this process was relatively good water quality and performance in the removal efficiency of SS, nitrogen and phosphorus was particularly higher.

Organic fouling in forward osmosis (FO): Membrane flux behavior and foulant quantification

  • Xia, Shengji;Yao, Lijuan;Yang, Ruilin;Zhou, Yumin
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.161-172
    • /
    • 2015
  • Forward osmosis (FO) is an emerging membrane technology with potential applications in desalination and wastewater reclamation. The osmotic pressure gradient across the FO membrane is used to generate water flux. In this study, flux performance and foulant deposition on the FO membrane were systematically investigated with a co-current cross-flow membrane system. Sodium alginate (SA), bovine serum albumin (BSA) and tannic acid (TA) were used as model foulants. Organics adsorbed on the membrane were peeled off via oscillation and characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). When an initial flux of $8.42L/m^2h$ was applied, both flux reduction and foulant deposition were slight for the feed solution containing BSA and TA. In comparison, flux reduction and foulant deposition were much more severe for the feed solution containing SA, as a distinct SA cake-layer was formed on the membrane surface and played a crucial role in membrane fouling. In addition, as the initial SA concentration increased in FS, the thickness of the cake-layer increased remarkably, and the membrane fouling became more severe.