• 제목/요약/키워드: Forster transfer

검색결과 14건 처리시간 0.018초

고효율 청색 유기발광다이오드의 DPVBi와 BCzVBi 사이에서 발생하는 흡열 페르스터 에너지전이 (Endothermic Forster Energy Transfer from DPVBi to BCzVBi in High Efficient Blue Organic Light-Emitting Diodes)

  • 김유현;이상연;송욱;신성식;류대현;;;김우영
    • 대한화학회지
    • /
    • 제54권3호
    • /
    • pp.291-294
    • /
    • 2010
  • 본 연구에서는 다양한 농도의 BCzVBi를 청색 형광도판트, DPVBi를 청색 호스트 물질로 적용한 청색OLED 소자를 제작하였다. 최적화된 고효율 청색 OLED 소자의 적층 구조는 NPB (500 ${\AA}$)/DPVBi:BCzVBi-6%(150 ${\AA}$)/$Alq_3$(300 ${\AA}$)/Liq(20 ${\AA}$)/Al (1000 ${\AA}$)으로 구성되었다. 청색 OLED의 최대휘도는 구동전압 13.8V에서13200 cd/$m^2$이고 전류밀도 및 최대효율은 각각 1000 cd/$m^2$의 휘도에서 26.4 mA/$cm^2$, 구동전압 3.9 V에서 4.24 cd/A 이었다. 도핑된 청색 OLED 소자의 발광효율은 도핑되지 않은 소자의 2배에 이른 반면 색좌표는 (0.16, 0.19)로 서로 비슷하였다. BCzVBi가 6% 도핑된 청색 OLED 445 nm와 470 nm에 2개의 EL 스펙트럼의 Peak이 존재하는 반면 도핑되지 않은 순수한 DPVBi 청색OLED 소자는 456 nm에서의 유일한 Peak만을 보여주고 있다. 이는 호스트 물질인 DPVBi의 LUMO와 도판트 물질인 BCzVBI의 LUMO 사이에 분자 진동에 의한 페르스터 에너지 전이에 기인한 것이다.

Proton Transfer Equilibria in The Excited State of Piroxicam and Its Analog in Aqueous Solution

  • Yoon, Min-Joong;Kim, Yong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권5호
    • /
    • pp.434-437
    • /
    • 1989
  • The pH dependence of the absorption and fluorescence of 4-hydroxy-2-methyl-1,2-benzothiazinenecarboxylat es, piroxicam and HMBDC have been measured and compared with the solvent dependence of the spectra reported previously. Four different prototropic species are observed in both ground and excited states of piroxicam ; the cation, the neutral, the anion and the dianion, while three different species such as the cation, the neutral and the anion are observed in HMBDC. The $pK_a$ and $pK_a^{\ast}$ have been determined by absorptiometric titration and Forster cycle method, respectively. The probable structure of each species has been proposed on the basis of the intramolecular phototautomerism.

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

색변환법 유기전계발광 소자용 유기 발광 재료의 합성 및 특성 분석 (Synthesis and Characteristics of Organic Emitting Materials for OLEDs using Color Conversion Method)

  • 곽선엽;류정이;남장현;이태훈;김태훈;손세모
    • 한국인쇄학회지
    • /
    • 제23권1호
    • /
    • pp.77-97
    • /
    • 2005
  • Organic light-emitting diodes(OLEDs) have received considerable attention since they were first reported by Tang. Novel organic fluorescent materials have been reported on synthesis and application of new organic light-emitting materials. Despite of much recent progress, fabrication of full-color OLEDs still remained to be done. Many method have been proposed to full-color OLEDs displays such as using separated red, green and blue emitters, stacking separate rad, green and blue emitter, using a white emitter with individually pattered color filters, microcavity structures and using a blue emitter with individually patterned fluorescent materials. The last method has much attention because of easy fabrication of OLEDs and low-priced fabrication. This paper reports the optical and electrical characteristics of OLEDs using novel molecules containing biphenyl structure. Optical properties of biphenyl derivatives doped with poly(9-vinyl carbazole)(PVK) are measured and found Forster energy transfer process in the blends. And devices were fabricated as ITO/PEDOT/PVK doped with biphenyl derivatives/$Alq_3$/Li:Al and I-V-L characteristics and EL efficiency of devices were examined.

  • PDF