• Title/Summary/Keyword: Forming speed

Search Result 378, Processing Time 0.021 seconds

Development of Electrohydraulic Forming Apparatus and Its Experimental Study (액중 방전 성형의 실험 장치 개발 및 실험적 연구)

  • Woo, Mina;Noh, Hakgon;Song, WooJin;Kang, Beomsoo;Kim, Jeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.236-241
    • /
    • 2017
  • Electrohydraulic forming is a high-speed forming process that deforms a blank using electric discharge in liquid. When high voltage is discharged in the water, a shock wave is propagated from the tip of the electrodes to the blank, causing the blank to be deformed into the die. Electrohydraulic forming has many advantages including improved formability and reduced bouncing effect and springback. The objective of this paper was to conduct a feasibility study to identify the electrohydraulic effect. An electrohydraulic forming apparatus was developed and experiments were carried out. The results of the experiment showed that the developed apparatus had sufficient energy to deform the blank into the die. Using the hole to emit residual air in the die was more effective than using the vacuum pump in terms of saving on experiment time.

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Biaxial Stretch Forming (유리섬유 강화 열가소성 복합재료의 2축 인장성형시 재료거동에 관한 연구)

  • 이중희;류성기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.169-175
    • /
    • 2000
  • The object of this study was to investigate the feasibility of solid-phase forming of the composites and to characterize the material behavior in the biaxial stretch forming. The materials tested contained 20%, 30%, and 40% glass fibers by weight in a polypropylene matrix. Biaxial stretch forming tests were performed at three forming speeds of 10mm/sec, 1mm/sec, and 0.1mm/sec and at four forming temperatures of $75^{\circ}C, 100^{\circ}C, 125^{\circ}C, and 150^{\circ}C$ to investigate effects of forming speed and forming temperature. The microscopic observation of a formed part was conducted at various strain levels to characterize the material behavior. The strain distribution on a formed part was measured and displayed on the farmed geometry with a contour display The material behavior of the composite in the biaxial stretch forming was strongly influenced by the forming conditions.

  • PDF

Effects of sheet and stamping process variables on side wall curl (딥 드로잉 벽면 만곡에 미치는 소재 및 가공조건의 영향)

  • 박기철;한수식;조태현;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.53-57
    • /
    • 1998
  • In order to investigate the effects of the variables during the stamping process upon the side wall curl behavior, experiments and finite element analyses were done using a 90 degree draw-bending test. The variables considered were the die radius, the forming speed, the restraint force, the lubrication and the sheet grade. The experiments and simulation conditions were selected according to the design of experiment (DOE) approach. The effects of the restraint force, the lubrication and the forming speed were the same for both high strength and mild steels, but the effects of the die radius on the side wall curl were dependent on the magnitude of the die radius and the sheet grade. A straight side wall was observed for both high strength and mild steels when the die radius was about 2∼3 times of the sheet thickness. It was recommended that the restraint force, the forming speed and the friction be increased in order to reduce the side wall curl.

  • PDF

Plastic Forming Characteristics of AZ3l Mg Alloy in Warm Backward Extrusion (온간 후방 압출공정에서 AZ31 Mg 합금의 성형 특성)

  • Yoon, D.J.;Lim, S.J.;Kim, E.J.;Cho, C.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.597-602
    • /
    • 2006
  • Bulk plastic forming characteristics were studied for the magnesium alloy, AZ31 in warm backward extrusion. Effects of process conditions such as extrusion ratio, forming temperature, and punching speed were investigated respectively. Variation of microstructure induced by the warm backward extrusion process was observed. Microstructure of the work piece showed evidences of recrystallization under the experiment conditions. It is estimated that in specific punch speed region fast stroke accelerates recrystllization and reduces the forming load.

Experimental Study on Frictional Characteristics of Sheet Metal Forming (박판성형 마찰특성의 실험적 연구)

  • 금영탁;이봉현;차지혜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.54-57
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction tests of various sheets were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extreme1y low or high, the friction coefficient is high. As punch comer radius and punch speed are bigger, the value of friction coefficient is smaller. The sensitivity of friction coefficient is mainly governed by lubricant viscosity and sheet surface roughness.

  • PDF

Study on Al Hot Forming using Air Bulging (Air Bulging을 이용한 열간 알루미늄 성형에 관한 연구)

  • Park, D.H.;Kang, S.S.;Kim, B.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.145-147
    • /
    • 2009
  • The benefits of hydroforming technology are known as weight and cost savings through part consolidation and reduced post-forming processes such as welding and piercing. Hydroforming technology has some weaknesses in terms of process cycle times. But, as the hydraulic system and process designs are continuously developed, the cycle time is also reduced to acceptable and competitive levels. Hot air bulging is one of recently developed hydroforming techniques. Hot air bulging in order to further extend the forming degrees of Al lightweight material is investigated. A heated tube is placed in a heated die and sealed at the ends by sealing cylinders. The tube is subsequently expanded against the die cavity wall by internal pressure provided by air medium. The result of this study shows that axial feeding speed and air pressure have an effect on formability of Al air bulging at elevated temperature.

  • PDF

A Study on the Manufacturing Process for High-finned Tube of Copper Pipe using Roll Forming Method (전조공법을 이용한 동관의 하이핀 튜브 제조 공정에 대한 연구)

  • Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • High-finned tubes have good thermal conductivity and have better cooling efficiency than plain tubes or low-fined tubes due to bigger air contact area. During high-fined tubes are manufactured by roll forming, the main technique is illustrated to optimizing primary material(copper pipe), optimized die matrix designing technique for roll forming, control manufacturing speed to develop productivity etc. In this study, a roll forming system was developed in oder to produce high-finned tube. Also a multi-step roll forming die was designed & built to produce high-finned tube that has over 10 mm fin height. And then, roll forming test using copper pipe was performed to produce high-finned tube. Roll forming process for producing highfinned tube was optimized by analyzing and adjusting misrostructure, hardness, and surface roughness of roll formed high-fined tube.

On the Springback Analysis of Sheet Metal Forming (판재성형의 탄성복원해석에 대하여)

  • 조진우;정완진
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.386-394
    • /
    • 1997
  • The analysis of the springback is done based on the stress of sheet after forming. Therfore, it is important to get the accurate stress from forming analysis. In this study, some parameters that influence on the accuracy of the springback estimation are investigated. Discretization of sheet and tools, choice of penalty constant and damping in contact treatment, and tool speed scaling are chosen as parameters. As a numerical example, the 2D draw bending benchmark problem of the NUMISHEET'93 is used. Also, the springback results of the s-rail benchmark problem of the NUMISHEET'96 are presented.

  • PDF

A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming (탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF