• 제목/요약/키워드: Forming simulation

검색결과 838건 처리시간 0.032초

언더레일의 롤포밍 공정 시뮬레이션에 관한 연구 (A Study on Roll Forming Simulation of Under Rail)

  • 정상화;이상희;김광호;김재상;김종태
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.78-85
    • /
    • 2008
  • Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, time is consuming and much money are needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process. In this paper, the design of roll forming process and the simulation are performed to manufacture the upper member at under rail composed of three members. The cold rolled carbon steel sheet(SCP-1) is used in this simulation, and a flow stress equation is set up by conducting the tensile test. The upper member is designed using two types of design for a excellent design. Each types are simulated and compared with the strain distribution using SHAPE-RF software. In addition, the numerical magnitude of bow and camber which are the buckling phenomenon is estimated.

알루미늄, 마그네슘과 구리합금의 비정형롤판재성형 공정 적용성 비교에 관한 연구 (Comparative Study of Applicability of Aluminum, Magnesium and Copper Alloy Sheets using Flexibly-reconfigurable Roll Forming)

  • 길민규;윤준석;박지우;강범수
    • 소성∙가공
    • /
    • 제26권3호
    • /
    • pp.168-173
    • /
    • 2017
  • A new sheet metal forming process, called flexibly reconfigurable roll forming (FRRF), is expected to resolve the economical limitation of the existing 3D curved sheet metal forming processes. The height-controllable guides and a couple of flexible rollers are utilized as the forming tool. Recently, as the 3D curved sheet metal is increasingly demanded in various fields, the application of FRRF to diverse materials is necessary. In addition, the formability comparison of several materials is needed. Therefore, in this study, we investigated the applicability of FRRF for different materials such as aluminum, magnesium, and copper alloys, and also the formability of these materials was compared using FRRF. The numerical simulation was conducted using ABAQUS, the commercial software, and the experiments were carried out using an FRRF apparatus to validate the simulation results. Finally, the applicability of FRRF for the chosen materials and the formability of these materials on FRRF process were confirmed by comparing the simulation and experimental results.

롤포밍 공정을 이용한 고장력강 재질의 범퍼보강 차체판넬 개발에 관한 연구 (A Study on Development of Automotive Panel of Bumper Reinforcement with High Strength Steel Using Roll Forming Process)

  • 정동원;김동홍;김봉천
    • 한국정밀공학회지
    • /
    • 제29권8호
    • /
    • pp.840-844
    • /
    • 2012
  • Roll forming process is a sheet metal forming process where the forming occurs with rolls in several steps, often from an undeformed sheet to a product ready to use. And each pair of forming rolls installed in a forming machine operates a particular role in making up the required final cross-section. This process used to many industry manufactures and recently apply to automotive industry. This study, FEM simulation applied bumper reinforcement using SHAPE-RF software and analyzed about total effective strain, longitudinal strain, thickness according to the roll-pass.

강철재 약협의 공정해석 및 성형공정 개선에 관한 연구 (A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body)

  • 장동환;유태곤;황병복
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.246-246
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

강철재 약협의 공정해석 및 성형공정 개선에 관한 연구 (A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body)

  • 장동환;유태곤;황병복
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.245-252
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

  • PDF

이중 곡률을 갖는 판재 성형을 위한 롤셋(Roll Set) 성형 공정 개발 (Development of a Forming Process using the Roll Set for the Manufacture of a Doubly Curved Sheet Metal)

  • 윤석준;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.44-47
    • /
    • 2002
  • In order to make a doubly curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forcing process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets and FEM simulation, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll. The FEM simulation of the forming process using the roll set along the one path shows the distributions of the curvatures in two directions along the path, and gives information about the characteristics of the proposed forming process.

  • PDF

고분자 필름 및 구리선 이종 물성을 고려한 EV모터용 헤어핀 성형 공정 해석 (Forming Simulation of EV Motor Hairpin by Implementing Mechanical Properties of Polymer Coated Copper Wire)

  • 김동춘;임윤재;백민광;이명규;오인석
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.122-128
    • /
    • 2023
  • As electric vehicles (EV) have increasingly replaced the conventional vehicles with internal combustion engines (ICE), most of automotive makers are actively devoting to the technology development of EV parts. Accordingly, the manufacturing process for power source has been also shifting from engine/transmission to EV motor/reducer system. However, lack of experience in developing the EV motor still remains as a technical challenge. In this paper, we employed the forming simulation based on finite element modeling to solve this problem. In particular, in order to increase the accuracy of the forming simulation, we introduced the elastic-plastic constitutive model parameters for polymer-copper hybrid wire by investigating the individual strain-stress curves, and elastic modulus of polymer and copper. Then, the reliability of modeling procedure was confirmed by comparing the simulated results with experiments. Finally, the identified mechanical properties and finite element modeling were applied to a hairpin forming process, which involves multiple deformation paths such as bending, pressing, widening, and twisting. The proposed numerical approach can replace common experience or experiment based trials by reducing production time and cost in the future.

삼차원 프레스가공 시뮬레이션 기술을 활용한 수요가 가공공정 분석과 최적 재질선정 (Press forming severity analysis and selection of optimum sheet steel properties for customer lines by using 3-D simulation program.)

  • 박기철;한수식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.111-131
    • /
    • 1996
  • In order to analyze stamping processes and to select optimum material properties of sheet steels for customer lines, 3-dimensional finite element analysis software were used. Commercial explicit finite element code, PAM-STAMP, was able to simulate 3-dimensional press formed parts with good accuracy and gave some useful results by orthogonal array experiments. Deformation of draw-bead were predicted by ABAQUS accurately, so that material selection for those parts by simulation were possible.

레이디얼 압출에서 플랜지의 성형한계 (The Forming Limit of Flange in the Radial Extrusion)

  • 고병두;장동환;최호준;임중연;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.228-235
    • /
    • 2003
  • In this paper, the workability of flange in the radial extrusion is analyzed in terms of the deformation pattern, the punch load and the forming limit by using simulation and experiment. A single action pressing is applied to both simulation and experiment. The analysis in this study is focused on the transient extrusion into the gap in radial direction with various gap heights and die corner radius. Based on the surface strains where surface cracking occurs, the forming patterns and strain-fracture relationships in producing radially extruded flange are obtained.

THE DEVELOPMENT OF SUS 316L BONE PLATE FORGING PROCESS BY COMPUTER SIMULATION TECHNOLOGY

  • Hwang Robert S.;Jou Jin-Long;Wang Kai-Hung;Chen Yi-An
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.36-39
    • /
    • 2003
  • Due to the strength and biocompatibility requirement, the stainless steel SUS 316L is widely used for trauma internal fixation device. SUS 316L can be hardened and strengthened only by cold work. In this work, the material compression test is performed both in laboratory and computer simulation by a FEM analysis software DEFORM to correlate the hardness to strain. This data is then used for preform design and predict the hardness of the finish bone plate forging. Finally, we compared the hardness between the actual forging and computer analysis results. Although the predicted hardness from computer simulation. is 55HV higher than the final forging sample, we can get good compatibility on the hardening tendency of cold forging.

  • PDF