• Title/Summary/Keyword: Forming information

Search Result 1,011, Processing Time 0.035 seconds

A Study of 3D Design Data Extraction for Thermal Forming Information

  • Kim, Jung;Park, Jung-Seo;Jo, Ye-Hyan;Shin, Jong-Gye;Kim, Won-Don;Ko, Kwang-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.1-13
    • /
    • 2008
  • In shipbuilding, diverse manufacturing techniques for automation have been developed and used in practice. Among them, however, the hull forming automation is the one that has not been of major concern compared with others such as welding and cutting. The basis of the development of this process is to find out how to extract thermal forming information. There exist various methods to obtain such information and the 3D design shape that needs to be formed should be extracted first for getting the necessary thermal forming information. Except well-established shipyards which operate 3D design systems, most of the shipyards only rely on 2.5D design systems and do not have an easy way to obtain 3D surface design data. So in this study, various shipbuilding design systems used by shipyards are investigated and a 3D design surface data extraction method is proposed from those design systems. Then an example is presented to show the extraction of real 3D surface data using the proposed method and computation of thermal forming information using the data.

Identification of Forming Limits of Sheet Metals for Automobile Parts by Asymmetric Deep-drawing Experiments (비대칭 시편의 딥드로잉 실험에 의한 박판금속의 성형한계도)

  • Heo, Hun;Lee, Chung-Ho;Jeong, Jae-Ung
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1998
  • Identification of forming limits of sheet metals is an important task to be done before the sheet metal forming processes. The information of the forming limit is indispensable for design of deformed shapes and related forming processes. This procedure becomes more important than ever as the auto-body becomes complicated and the number of auto-body parts is reduced for lower production cost. To identify the forming limit of sheet metals stretching with a hemispherical punch has gained popularity because of the convenient experimental procedure. The stretching experiment however has localized deformation or the shear band is originated from the non-unifrom deformation in the critical circum-stance instead of the absolute criterion. More accurate information of the forming limit therefore could be obtained by a more appropriate experiment to the real process. In this papaer an experiment program is devised to practivally identify the forming limits of sheet metals for auto-body parts. The experiment program contains not only stretching but deep-drawing Both forming experiments use the same hemispherical punch while they use different specimens. Deep-drawing experiments use speci-mens cut out in circular arc on both sides of circular blank to make it torn during the deep-drawing They also use speciments cut out straight in one side of a circular blank to make it deformed unevenly which causes local deformation during the deep-drawing. The experimental result demonstrates that the forming limit diagrams in the two cases show difference in their effective magnitude. The forming limit curve from deep-drawing is located lower than that from stretching. It is noted from the result that the deep-drawing process causes acceleration of localized deformation in comparison with the stretching process. From the experimental result the maximum value of forming limit could be pre-dicted for safe design.

  • PDF

Laser Forming of Sheet Metal by Geometrical Information (기하학적 정보를 이용한 이중곡률 형상의 레이저 성형)

  • Kim, Ji-Tae;Na, Seok-Ju
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.91-93
    • /
    • 2005
  • Forming sheet metal by laser-induced thermal stresses (laser forming) has been extensively studied, and the research has focused on two-dimensional geometries using a multi-pass straight line scan. Recently there came out some useful studies or three-dimensional laser forming which is applied to doubly curved shapes. The task of 3D laser forming sheet metal is to determine a set of process parameters such as laser scanning paths, laser power and scanning speed that will make a given shape. New method for laser forming of a doubly curved surface by using geometrical information was proposed and verified by experiments. This method shows good performance in the sense of calculation time and accuracy compared to the inherent strain method.

  • PDF

Curved Hull Plate Forming based on SOAP Internet Services (인터넷 서비스 기반의 선체외판 가공 연구)

  • Kim, Chan Suk;Son, Seung Hyeok;Shin, Jong Gye;Lee, Philippe
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Fabrication of the hull plate demands a lot of man-hour and a high degree of technology. In recent years, commercial shipping orders have been fallen because of intensifying competition with low price of order and labor cost. In order to solve this problem, a countermeasure such as a cost reduction is required. In this study, we are dealing with the method of supplying the forming information of the hull to the production site. We reviewed studies of hull forming that have been proposed so far to develop a method for providing hull forming information. On the basis of given production plans from the production site of shipyard, we discuss how to convert shell plate to production plan. Then, we will discuss the efficiency of the distribution method through the network about the method of hull forming. Thus, we have modified the distribution method which was proposed before. Finally, we will introduce the enhanced method for providing fabrication information of the hull plate to the small and medium-sized shipyards.

Analysis of superplastic forming/diffusion bonding process using a finite element method (유한요소법을 이용한 초소성 성형/확산접합 공정해석)

  • Song, J.S.;Kim, Y.H.;Hong, S.S.;Kang, Y.K.;Lee, J.H.;Kwon, Y.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.265-268
    • /
    • 2006
  • The superplastic forming/diffusion bonding is widely accepted as an advanced technique for forming complex industrial components. But the superplastic forming process requires much forming time and generates excessive thinning thickness distribution of formed part. Superplastic in materials is only achieved in a narrow range of strain-rate with optimum value unique to each material. In this study, finite element analysis for surperplastic forming/diffusion bonding (SPF/DB) processes of three-sheet and four-sheet sandwich parts. From this study, forming analysis have offered a lot of information for developing the forming process.

  • PDF

Development of a Forming Process using the Roll Set for the Manufacture of a Doubly Curved Sheet Metal (이중 곡률을 갖는 판재 성형을 위한 롤셋(Roll Set) 성형 공정 개발)

  • 윤석준;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.44-47
    • /
    • 2002
  • In order to make a doubly curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forcing process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets and FEM simulation, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll. The FEM simulation of the forming process using the roll set along the one path shows the distributions of the curvatures in two directions along the path, and gives information about the characteristics of the proposed forming process.

  • PDF

Development of Numerical Control System for Plate forming Automation (강판의 곡가공 자동화를 위한 수치제어 시스템의 개발)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • This paper deals with the development of an interface program for automatic plate forming, which can exchange information between the heating line information generation program and the automatic heating apparatus. In this paper, the performance of the developed interface program has been verified from the view point of numerical position control. By applying the interface program to the operation of the automatic heating apparatus, an experiment of line heating has been conducted for several steel plate models. Based on the experimental results, a simplified relation to estimate angular distortion has keen derived as a natural characteristic of the present automatic heating apparatus. As a result of the present study, the prototype of the automatic plate forming system has been constructed, and its application to the real surface models found in the ship will be presented in the near future.

Active Noise Cancelling Headphone using Adaptive Beam-forming Techniques (적응 빔 포밍 기법을 적용한 능동 소음 제거 헤드폰)

  • Moon, Sung-Kyu;Nam, Hyun-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1699-1701
    • /
    • 2010
  • The Active Noise Cancelling(ANC) headphone is now becoming commercially available. But it reduces not only noise but also information signals such as speech or some signals including audible information in particular situation. In this paper, we propose an ANC headphone using adaptive beam-forming techniques which cancels signals except the headphone wearer's look direction signal. It enables workers working in noisy condition to talk with their coworkers. Computer simulation is performed to show the effectiveness of a proposed algorithm.

On the Prediction of the Wrinkling Initiation in Sheet Metal Forming Processes (박판성형 공정에서 발생하는 주름의 예측에 관하여)

  • Kim J. B.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.124-127
    • /
    • 2000
  • The finite element analyses of the wrinkling initiation and growth in the sheet metal forming process provide the detailed information about the wrinkling behavior of sheet metal. The direct analyses of the wrinkling initiation and growth, however, bring about a little difficulty in complex industrial problems because it needs large memory size and long computation time. For the description of wrinkling growth, the mesh elements should be sufficiently small and the size of finite element matrix becomes large. In the static implicit finite element method therefore, the direct analysis of wrinkling growth in a complex sheet metal forming process is rather difficult. From the industrial viewpoint of tooling design, the readily available information of possibility and location of wrinkling is sometimes more preferable to the detailed time-consuming information. In the present study, therefore, the wrinkling factor that shows locations and relative possibility of wrinkling initiation is proposed as a convenient tool of relative wrinkling estimation based on the energy criterion. The location and relative possibility of wrinkling initiation are predicted by calculating the wrinkling factor in various sheet metal forming processes such as cylindrical cup deep drawing, spherical cup deep drawing, and elliptical cup deep drawing. The wrinkling factor is also implemented in the analysis of the door inner stamping process to predict wrinkling.

  • PDF

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF