• Title/Summary/Keyword: Forming effects

Search Result 1,334, Processing Time 0.031 seconds

Effect of the Forming Condition on Flexural Strength of Green and Sintered Bodies of Tungsten Carbide for Cutting Tool (절삭공구용 초경합금의 성형체 및 소결체의 강도에 미치는 성형조건의 영향)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.796-799
    • /
    • 2004
  • The effects of forming presure, organic binder content and moisture on flexural strength were investigated. As moisture content increased in the granules during compaction, the density and strength of the green body were increased. Green strengths were found to improve more strongly with increasing forming pressure in the case of using the granules of higher organic content. The sintered strength was the highest with the organic content of 0.2wt% under all forming pressures.

  • PDF

Blank Design of The High Miniature Rectangular vibrator Case for The Cellular Phone (휴대폰용 초소형 사각 진동모터 케이스의 블랭크 설계)

  • Ha B. K.;Ku T. W.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.101-104
    • /
    • 2000
  • Milli-structure components are classified as component group whose size is between macro and micro scale. that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In order to conventional metal forming, where numerical process simulation is already idly applied, the micro-forming process is characterized by some scale effects which have to be considered in an advanced process simulation. milli-structure rectangular cup drawing is analyzed and designed using the finite element method and experiment. The result of the finite element analysis is confirmed by a series of experiment.

  • PDF

Forming Characteristics of Laser Welded Tailored Blanks III : Stretch Forming Characteristics (레이저 용접 테일러드 블랭크의 기본 성형특성 III : 신장성형 특성)

  • Park, Gi-Cheol;Han, Su-Sik;Jin, Jo-Gwan;Gwon, O-Jun
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.354-363
    • /
    • 1998
  • In order to analyze the stretch forming characteristics of tailored blanks, laser welded blanks of different thickness and strength combinations were prepared and stretching tests were done. The stretching formability of laser welded blanks was reduced as increasing the deformation restraining force ($strength{\times}thickness$) ratio between two welded sheets. Weld line movement was attributed to strain concentration at weaker sheets and resulted in fracture at weaker sid, so that fracture could be predicted by the forming limit of the weak sheet. In the case of a welded blank with the similar deformation restraining force rations between two welded sheets, crack occurred at weld and its forming limit was about 15% less than the base sheet. The effects of lubrication and weld line position on stretch-ing formability were also investigated by experiments. Lower friction did not always give better formability for tailored blanks. Stretching formability was observed to be improved as increasing the area of weak sheet.

  • PDF

A Study on the Forming Characteristics of Flange Using Pipe (파이프를 이용한 플랜지의 성형특성에 관한 연구)

  • Lee, S.D.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.67-74
    • /
    • 2007
  • This study is aimed to find out the optimal forming conditions by comparing and analyzing material flow, deformation pattern, and a forming load through rigid-plastic FEM for a flange using pipe. Flanges are widely used for various purposes as connectors of industrial steel pipes which are manufactured by drawing process. The forming feature of flange was reviewed through both heading process and radial extrusion process in a cold working condition. As a result of simulation, the shape of flange can not be made by heading process, but made by radial extrusion process. The effects of design factors, such as gap-height, die-comer radius, and frictional factors on maximum forming load and deformation pattern are investigated for radial extrusion process.

Blank Design of The High Miniature Rectangular Vibrator Case for The Cellular Phone (Cellular Phone용 초소형 사각 진동모터 케이스의 블랭크 설계)

  • Ha, B.K.;Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.754-758
    • /
    • 2000
  • Milli-structure components are classified as component group whose size is between macro and micro scale. that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In order to conventional metal forming, where numerical process simulation is already fully applied, the micro-forming process is characterized by some scale effects which have to be considered in an advanced process simulation. milli-structure rectangular cup drawing is analyzed and designed using the finite element method and experiment. The result of the finite element analysis is confirmed by a series of experiments.

  • PDF

Characteristics of Hot Forming of Magnesium Alloys for Light-weight Valves (경량 밸브 제조용 마그네슘 합금의 고온 성형 특성)

  • Park, Joon-Hong;Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2012
  • In recent years, Magnesium(Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. In this study, Microstructure, Vickers hardness and tensile tests were examined and performed for each specimen to verify effects of forming conditions. Also to verify upsettability and forming limit of the specimen at room temperature and elevated temperature, upsetting experiments were performed. For comparison, experiments at elevated temperature were performed for various Mg alloy, such as AZ31, AZ91, and AM50. The experimental results were compared with those of CAE analysis to propose forming limit of Magnesium alloys.

Deformation Behavior of Bulk Amorphous Alloys During Hot Forming Process (열간성형공정에서 벌크 아몰퍼스 소재의 변형거동)

  • Lee Yong-Shin
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.696-703
    • /
    • 2004
  • The purpose of this study is to examine the bulk/sheet forming characteristics of bulk amorphous alloys in the super cooled liquid state. Recently it is reported that amorphous alloys exhibit stress overshoot/undershoot and non-Newtonian behaviors even in the super cooled liquid state. The stress-strain curves with the temperature-dependences as well as strain-rate dependence of Newtonian/non-Newtonian viscosities of amorphous alloys are obtained based on the previous experimental works. Then, those curves are directly used in the thermo-mechanical finite element analyses. Upsetting and deep drawing of amorphous alloys are simulated to examine the effects of process parameters such as friction coefficient, forming speed and temperature. It could be concluded that the superior formability of an amorphous alloy can be obtained by taking the proper forming conditions.

Optimum design of a pilger mill process for wire forming using CAD/CAE (CAD/CAE를 이용한 세선 성형용 필거밀 공정의 최적설계)

  • 정용수;박훈재;김승수;나경환;이형욱;한창수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.84-88
    • /
    • 2003
  • In this paper, The optimum design of a die shape has been carried out the FEM analysis of a pilger mill process considering various factors. The pilger mill forming process consists of a pair of rotating die which has appropriate surface shape. The important design parameters of the pilger mill are the feed rate and the profile of grooved die. Optimum design procedure was performed in order to investigated effects on the forming load and the deformed shape of material depending on the die radius profile. Profile of the die surface for the optimum design were suggested with the linear, the cosine and the quadratic curve considering a physical forming process. The surface of each die was modeled using the 3DAutoCAD and the analysis of pilger forming process was performed using the LS-DYNA3D. The optimum profile of the die shape for the pilger mill was determined to the quadratic profile. Since the analysis results provide that the model of the quadratic profile gives the lowest forming load and a proper deformed shape.

  • PDF

A Study on the Forming Load for roller feed rate and Thickness Reduction in the spinning Process of launch vehicle fuel tank dome (돔 형상의 스피닝 가공 공정에서 롤의 이송 속도와 소재의 두께감소에 대한 성형력 연구)

  • Yeom Sung-Ho;Nam Kyoung-O;Hong Sung-In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • Conventional spinning, shear forming and flow forming techniques are being utilized increasingly due to the great flexibility provided for producing complicated parts, enabling customers to optimize designs and reduce weight and cost, all of which are vital, especially in automotive industries, space shuttle, a munitions industry. The deformation mechanism of conventional spinning and shear forming is studied in this paper through analysis. The forming loads of a spin formed dome in an Al launch vehicle fuel tank was studied analysis and a simple FE model to predict the forming loads of the dome was proposed. The analysis is carried out to study the effects of feed rates and thickness reduction on material flow.

  • PDF

Parameter Characterization for Underwater Laser forming of SUS430/Cu/SUS430 Laminated Composite Layer (수중 레이저 굽힘시 SUS430/Cu/SUS430 복합판재 성형 특성 분석)

  • Park, S.H.;Oh, I.Y.;Han, S.W.;Woo, Y.Y.;Hwang, T.W.;Seyedkashi, S.M.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • Laser forming is an advanced process in sheet metal forming in which thermal stress originated from the laser heat source is used to shape the metal sheet. However, substantial waiting time is normally necessary for the workpiece to cool down between consecutive scans so that a steep temperature gradient can be reestablished in the next scan. In order to solve this drawback, laser bending characteristics are experimentally implemented in underwater condition. Laser forming effects under various conditions, including different laser power, scanning velocity, beam diameter, number of passes and material, are investigated. The results show that the underwater laser forming facilitates deliberate forming. The bending angle per respective laser scan is decreased with increasing the number of passes and scanning velocity.