• Title/Summary/Keyword: Forming die

Search Result 941, Processing Time 0.034 seconds

A Study on Forming Characteristics in Plate Type Cross Rolling Process (평판형 전조압연의 성형특성 연구)

  • Yoon D. J.;Lee G. A.;Lee N. K.;Choi S.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

Development of Tube End-forming Process using Roll Die (롤다이를 이용한 튜브 축관공정 개발)

  • Kim, Yeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.121-126
    • /
    • 2011
  • An accumulator placed on the refrigerant cycle pipe lines is a part to relax fluctuations of pressure within the pipe lines and stabilize refrigerants flowed into pipe. The accumulator has been mainly manufactured by the process of tube spinning using CNC(Computer Numerical Control) lathe. However, this process has the defects which are low productivity per hour and high cost. For that reason, tube end-forming using roll die is actively being developed, recently. The purpose of this study is to develope the tube end-forming process using roll die in order to manufacture the accumulator for the refrigeration pipe lines. First, the process design of tube end-forming was performed based on specification of product, and then was verified with FE analysis. Also, the effects of friction coefficient and revolution speed of roll die on forming load were investigated. The analytical results were applied in the final process design of tube end-forming. Finally, tube end-forming test was carried out to verify the validity of the FE analysis and the process design.

Studies on the Forming Process for the Bipolar Plate of Fuel Cells

  • Jin, Chul-Kyu;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.175-181
    • /
    • 2018
  • Stamping process and rubber pad forming process were performed to manufacture the bipolar plate for fuel cells. For that, a vacuum die casting process and a semi-solid forming process wherein liquid-state materials were used were adopted. After preparing the blank with the stainless steel thin plate having a thickness of 0.1 mm, the bipolar plate channel was formed with the stamping process and rubber pad forming process. The depth of the bipolar plate channel prepared by the stamping method was 0.45 mm and the depth of the bipolar plate channel prepared by the rubber pad forming process was 0.41 mm. Meanwhile, with the vacuum die casting and semi solid forming, the bipolar plate having a channel depth of 0.3 mm, same as the size of the die, could be formed.

Billet Treatment and Die Design for Net-Shape Forming of Gear by Cold Forging (정밀정형 냉간단조 기어성형을 위한 소재처리와 다이설계)

  • Kang K.G.J.;Park H.J.;Yun J.C.;Kim J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, net-shape forming of an automobile gear is investigated. Barrel, a component of automobile start motor, is adopted as a net-shape forming. In order to accomplish the goal of net-shape forming without cutting of tooth and cam after forming, forming ability is raised through billet treatment and die design. As a technique of billet treatment spheroidizing annealing of billet to get low hardness and molybdenum disulphide coating to get low contact friction between billet and die is carried out. One of critical points of die design, fillet radii variation of tooth of die is applied to get smooth surface of barrel after cold forging. As a measurement of tooth accuracy, distance between two pins and lead-tooth alignments are investigated. Cam profile accuracy is checked with a 3D measuring instrument. Results obtained from the tests revealed reasonable result with respect to design goal. By these results, the paper shows that reasonable results can be obtained by billet treatment and die design for net-shape forming.

  • PDF

Forming Analysis for Automotive Fender Panel Considering Die Deformation (금형 변형을 고려한 자동차용 펜더 패널 성형해석)

  • Song M. J.;Lee S. Y.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.82-85
    • /
    • 2005
  • In order to see the effect of die deformation on the forming of sheet metal, the draw-ins, strains, and springbacks of an automotive fender panels are numerically simulated considering the die deformation found by the simultaneous structural analysis of press and dies. The comparison of the forming analysis result between the rigid die and the deformed die layout shows that the deformed tool provides more accurate forming and springback result.

  • PDF

Experimental and Analytical Study on the Die Wear during the Upsetting Processes (업셋팅 금형의 마모 실험 및 해석)

  • 박종남;김태형;강범수;이상용;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.122-130
    • /
    • 1996
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to abtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

  • PDF

Stamping process design to develop a urea tank cover for excavators based on sheet metal forming analysis (굴삭기 요소수 탱크 커버의 신규 모델 개발을 위한 CAE 기반 프레스 성형 공정 설계)

  • Jeon, Yong-Jun;Heo, Young-Moo;Yun, Seok-Hyun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.49-55
    • /
    • 2020
  • Recently, when a new component of construction equipment is designed, a stamping process capable of producing parts having high appearance quality and precision has been gaining attention. However, in general, as it is developed based on existing parts made by welding metal sheets and tubes, frequent to die modification occurs, which increases the time and cost of developing new parts. Thus, it is necessary to reduce the cost by shortening the die development period. In this study, a stamping process was designed for the urea tank cover, which is a part for excavators, to reduce the die development period through sheet metal forming analysis. The stamping process was designed by determining the blank holding force after selecting the initial blank shape and size. The round value at the corner was modified such that formability is ensured. After selecting process parameters, the thickness reduction rate and spring-back effect were reviewed.

Progressive Forming Process Design of an Automotive Bracket Part with Computer Simulation (전산해석을 이용한 자동차 브라켓 부품의 프로그래시브 성형 공정 설계)

  • Kim, K.P.;Lee, D.G.;Jang, K.C.;Kim, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.126-129
    • /
    • 2008
  • This paper concerns the progressive die design for an automotive bracket part aided by the computer simulation in order to eliminate the inferiority such as the crack. The computer simulation of the progressive forming process is utilized in order to investigate cause of the cracks. This paper proposes a new guideline for the die design which modifies intermediate shapes and adds intermediate forming stages in progressive forming process. The effectiveness of the proposed design is verified by the computer simulation. The simulation result shows that the modified die design for the progressive forming process can eliminate the crack and improve quality of the automotive bracket part.

  • PDF

Development of Die Design System for Die Casting (다이캐스팅 금형 설계 시스템 개발)

  • 권택한;박준홍;최재찬;김재훈;김창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.316-321
    • /
    • 2000
  • Die Casting is one of the forming methods to manufacture large number of products with short period time and clean surface by high forming pressure and temperature of cast alloy. Die design is composed of selection of cast alloy, design of die casting product, runner and gate design etc. In reality, however, die design of die casting has been performed by trial and error method, which cause economic and time loss. This paper describes a research work of developing computer-aided design of die casting product and die design. Approach to the CAD system has been written in AutoLISP on the AutoCAD with personal computer. In this study, die design system for gate of die casting process has been developed to present algorithm for automation of die design, especially runner-gate system. As forming process and die design system using 3-D geometry handling are integrated with technology of process planning, die design is possible to set. In addition, specific rules and equations for the runner-gate system have been presented to avoid too many trails and errors with expensive equipment. It is possible for engineers to make automatic and efficient die design of die casting and it will result in reduction of expense and time to be required. An example is applied to cap-shaped casting using proposed algorithm.

  • PDF

Micro Channel Forming with Ultra Thin Metal Foil (초미세 금속 박판의 마이크로 채널 포밍)

  • Joo, Byung-Yun;Oh, Soo-Ik;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.