• Title/Summary/Keyword: Forming Parameter

Search Result 191, Processing Time 0.03 seconds

Interfacial properties of composite shotcrete containing sprayed waterproofing membrane

  • Park, Byungkwan;Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Kim, Jintae;Choi, Myung-Sik;Jeon, Seokwon;Chang, Soo-Ho
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study evaluates the interfacial properties of composite specimens consisting of shotcrete and sprayed waterproofing membrane. Two different membrane prototypes were first produced and tested for their waterproofing ability. Then composite specimens were prepared and their interfacial properties assessed in direct shear and uniaxial compression tests. The direct shear test showed the peak shear strength and shear stiffness of the composites' interface decreased as the membrane layer became thicker. The shear stiffness, a key input parameter for numerical analysis, was estimated to be 0.32-1.74 GPa/m. Shear stress transfer at the interface between the shotcrete and membrane clearly emerged when measuring peak shear strengths (1-3 MPa) under given normal stress conditions of 0.3-1.5 MPa. The failure mechanism was predominantly shear failure at the interface in most composite specimens, and shear failure in the membranes. The uniaxial compression test yielded normal stiffness values for the composite specimens of 5-24 GPa/m. The composite specimens appeared to fail by the compressive force forming transverse tension cracks, mainly around the shotcrete surface perpendicular to the membrane layer. Even though the composite specimens had strength and stiffness values sufficient for shear stress transfer at the interfaces of the two shotcrete layers and the membrane, the sprayed waterproofing membrane should be as thin as possible whilst ensuring waterproofing so as to obtain higher strength and stiffness at the interface.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung;Li, Di;Kim, Y.S.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Yim, I.S.;Kim, H.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.255-259
    • /
    • 2016
  • We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).

Evaluation of Strain, Strain Rate and Temperature Dependent Flow Stress Model for Magnesium Alloy Sheets (마그네슘 합금 판재의 변형률, 변형률 속도 및 온도 환경을 고려한 유동응력 모델에 대한 연구)

  • Song, W.J.;Heo, S.C.;Ku, T.W.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • The formability of magnesium alloy sheets at room temperature is generally low because of the inherently limited number of slip systems, but higher at temperatures over $150^{\circ}C$. Therefore, prior to the practical application of these materials, the forming limits should be evaluated as a function of the temperature and strain rate. This can be achieved experimentally by performing a series of tests or analytically by deriving the corresponding modeling approaches. However, before the formability analysis can be conducted, a model of flow stress, which includes the effects of strain, strain rate and temperature, should be carefully identified. In this paper, such procedure is carried out for Mg alloy AZ31 and the concept of flow stress surface is proposed. Experimental flow stresses at four temperature levels ($150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$) each with the pre-assigned strain rate levels of $0.01s^{-1}$, $0.1s^{-1}$ and $1.0s^{-1}$ are collected in order to establish the relationships between these variables. The temperature-compensated strain rate parameter which combines, in a single variable, the effects of temperature and strain rate, is introduced to capture these relationships in a compact manner. This study shows that the proposed concept of flow stress surface is practically relevant for the evaluation of temperature and strain dependent formability.

Dynamic Behavior of Unsaturated Decomposed Mudstone Soil Under Low Strain Amplitude (저변형률하 불포화 이암풍화토의 동적거동)

  • Huh, Kyung-Han;Chung, Choong-Sun;Bae, Joong-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.19-27
    • /
    • 2004
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils under low and high strain amplitude. For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum saturated degree of decomposed mudstone soils under low and strain amplitude is $32{\sim}37%$ which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

Interactive Effects of Increased Temperature and pCO2 Concentration on the Growth of a Brown Algae Ecklonia cava in the Sporophyte and Gametophyte Stages (갈조류 감태(Ecklonia cava)의 포자체와 배우체 생장에 영향을 주는 수온과 pCO2 농도의 상호작용)

  • Oh, Ji Chul;Yu, Ok Hwan;Choi, Han Gil
    • Ocean and Polar Research
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • To examine the effects of increased $CO_2$ concentration and seawater temperature on the photosynthesis and growth of forest forming Ecklonia cava (Laminariales, Phaeophyta), sporophytic discs and gametophytes were cultured under three $pCO_2$ concentrations (380, 750, 1000 ppm), four temperatures (5, 10, 15, $20^{\circ}C$ for sporophytes; 10, 15, 20, $25^{\circ}C$ for gametophytes), and two irradiance levels (40, $80{\mu}mol$ photons $m^{-2}s^{-1}$) for 5 days. Photosynthetic parameter values ($ETR_{max}$, $E_k$, and ${\alpha}$) were generally higher as sporophytic discs were grown under low temperature and increased $CO_2$ concentration at 750 ppm. However, photosynthesis of Ecklonia sporophytes was severely inhibited under a combination of high temperature ($20^{\circ}C$) and 1000 ppm $CO_2$ concentration at the two photon irradiance levels. The growth of gametophytes was maximal at the combination of 380 ppm (present seawater $CO_2$ concentration) and $25^{\circ}C$. Minimal growth of gametophytes occurred at enriched $pCO_2$ concentration levels (750, 1000 ppm) and high temperature of $25^{\circ}C$. The present results imply that climate change which is increasing seawater temperature and $pCO_2$ concentration might diminish Ecklonia cava kelp beds because of a reduction in recruitments caused by the growth inhibition of gametophytes at high $pCO_2$ concentration. In addition, the effects of increased temperature and $pCO_2$ concentration were different between generations - revealing an enhancement in the photosynthesis of sporophytes and a reduction in the growth of gametophytes.

POLARIZATION OF LYMAN α EMERGENT FROM A THICK SLAB OF NEUTRAL HYDROGEN

  • AHN, SANG-HTEON;LEE, HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

Photolithographic Properties of Photosensitive Ag Paste for Low Temperature Cofiring (저온동시소성용 감광성 은(Ag)페이스트의 광식각 특성)

  • Park, Seong-Dae;Kang, Na-Min;Lim, Jin-Kyu;Kim, Dong-Kook;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.313-322
    • /
    • 2004
  • Thick film photolithography is a new technology in that the lithography process such as exposure and development is applied to the conventional thick film process including screen-printing. In this research, low-temperature cofireable silver paste, which enabled the formation of thick film fine-line using photolithographic technology, was developed. The optimum composition for fine-line forming was studied by adjusting the amounts of silver powder, polymer and monomer, and the additional amount of photoinitiator, and then the effect of processing parameter such as exposing dose on the formation of fine-line was also tested. As the result, it was found that the ratio of polymer to monomer, silver powder loading, and the amount of photoinitiator were the main factors affecting the resolution of fine-line. The developed photosensitive silver paste was printed on low-temperature cofireable green sheet, then dried, exposed, developed in aqueous process, laminated, and fired. Results showed that the thick film fine-line under 20$\mu\textrm{m}$ width could be obtained after cofiring.

Buckling of thick deep laminated composite shell of revolution under follower forces

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour;Hemmati, Mona
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.59-91
    • /
    • 2016
  • Laminated composite shells are commonly used in various engineering applications including aerospace and marine structures. In this paper, using semi-analytical finite strip method, the buckling behavior of laminated composite deep as well as thick shells of revolution under follower forces which remain normal to the shell is investigated. The stiffness caused by pressure is calculated for the follower forces subjected to external fibers in thick shells. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness-shear flexibility. Displacements and rotations in the middle surface of shell are approximated by combining polynomial functions in the meridional direction as well as truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix which accounts for variation of loads direction will be derived for each strip of the shell. Assembling of these matrices results in global load stiffness matrix which may be un-symmetric. Upon forming linear elastic stiffness matrix called constitutive stiffness matrix, geometric stiffness matrix and load stiffness matrix, the required elements for the second step analysis which is an eigenvalue problem are provided. In this study, different parameter effects are investigated including shell geometry, material properties, and different boundary conditions. Afterwards, the outcomes are compared with other researches. By considering the results of this article, it can be concluded that the deformation-dependent pressure assumption can entail to decrease the calculated buckling load in shells. This characteristic is studied for different examples.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.