• Title/Summary/Keyword: Forming Machine

Search Result 305, Processing Time 0.022 seconds

A Study on the Rapid Prototyping using Automatic Design Program (자동설계 프로그램을 이용한 급속성형에 관한 연구)

  • 이승수;김민주;전언찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-22
    • /
    • 2002
  • A study is the selection of optimum forming condition for RP system. We develop the Automatic design program for machine element using visual LISP program in AutoCAD. Automatic design program reduces the required time for feedback between design and manufacturing of workpiece. Also we investigate the relationship between circularity of 3D solid model and circularity of rapid prototype using RP system and we will find optimum forming condition in RP system.

Development of Solid State Relay(SSR) Life Prediction Device for Glass Forming Machine (유리 성형기의 무접점릴레이(SSR) 수명 예측장치 개발)

  • Yang, Sung-Kyu;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.46-53
    • /
    • 2022
  • This paper presents the design and manufacture of a Solid State Relay (SSR) life prediction device that can predict the lifetime of an SSR, which is a key component of a glass forming machine. The lifetime of an SSR is over when the current supplied to the relay is overcurrent (20 A or higher), and the operating time is 100,000 h or longer. Therefore, the life prediction device for the SSR was designed using DSP to accurately read the current and temperature values from the current and temperature sensors, respectively. The characteristic test of the manufactured non-contact relay life prediction device confirmed that the current and temperature were safely measured. Thus, the SSR lifetime prediction device developed in this study can be used to predict the lifetime of an SSR attached to a glass forming machine.

Application of Multi-Layer Perceptron and Random Forest Method for Cylinder Plate Forming (Multi-Layer Perceptron과 Random Forest를 이용한 실린더 판재의 성형 조건 예측)

  • Kim, Seong-Kyeom;Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.297-304
    • /
    • 2020
  • In this study, the prediction method was reviewed to process a cylindrical plate forming using machine learning as a data-driven approach by roll bending equipment. The calculation of the forming variables was based on the analysis using the mechanical relationship between the material properties and the roll bending machine in the bending process. Then, by applying the finite element analysis method, the accuracy of the deformation prediction model was reviewed, and a large number data set was created to apply to machine learning using the finite element analysis model for deformation prediction. As a result of the application of the machine learning model, it was confirmed that the calculation is slightly higher than the linear regression method. Applicable results were confirmed through the machine learning method.

Machine Tool Technology; The Present and the Future(17) (공작기계 기술의 현재와 미래(17))

  • 강철희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.13-27
    • /
    • 1996
  • 소성가공이란 원재료를 소성변형(Plastic deformation)을 통해서 고체의 제품을 만드는 가공법이다. 가공중에 물체의 질량과 체적에는 크게 변화가 없다. 소성 가공중 주응력이 어떻게 작용하느냐에 따라서 소성가공을 여러가지로 분류하고 있다. 즉, Metal Forming은 다음과 같이 분류할 수 있다. 1) Compound Forming에는, Rolling, Free forming, Die forming, Stamping, Pressing 2) Tension compression forming에는, Drawing, Deep-drawing, Rimming, Spinning, Bulge forming 3) Tension forming에는 Lengthening, Widning, Deepening 4) Bending에는 Bending with linear tool motion, Bending with rotary tool motion 5) Thrust forming에는 Swaging, Twisting이 있다.

  • PDF

Improvement of a Rice Seed Pelleting Machine for Direct Seeding in Rice Cultivation(II) - Physical and cultural properties of the rice-seed pellets - (직파용 벼 펠렛종자 제조장치 개선 연구(II) - 펠렛종자의 물리적 특성과 재배특성 -)

  • 유대성;유수남;최영수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.411-420
    • /
    • 2003
  • Physical and cultural properties were investigated on the rice-seed pellets made by the pelleting machine(Yu, 2003) as the changes with mixing ratios of soil to rice seed of 6 : 1, 7 : 1, and 8 : I, and rotating speeds of forming rolls of 7, 10, and 13 rpm. Average weight, average diameter, and average sphericity of the pellets were 1.70 g, 12.0 ㎜, and 99.1 %, respectively. Average number of seeds per pellet was more than 3, and almost all pellets had more than 3 seeds in the cases of mixing ratios of 6 : 1, and 7 : 1 at the forming rolls' speed of 7 rpm. Gradual drying was needed because rapid drying caused cracks on surface of the pellets. Compression strength of the pellets dried in shady room was in the range of 132 ∼ 152 N, which was enough for handling. Comparing with the previous pellets(Park, 2002), average number of seeds per pellet, ratio of pellets including more than 3 seeds, and compression strength increased due to the effects of pressure feed of pellet materials, and improvements of the forming rolls. Emergence ratio of the pellets made at the mixing ratio of 6 : 1 and the forming rolls' speed of 7 rpm, was 100 % on dry paddy and was 97 % on flooded paddy surface. Good growth characteristics, and yield except number of seedling stand and ratio of missing plant were shown in planting of the pellets made at the mixing ratio of 7 : 1 and the forming rolls' speed of 7 rpm on flooded paddy surface field. Considering the cultural results, the mixing ratio of 6 : 1, and the forming rolls' speed of 7 rpm seems to be optimum operating condition for the improved pelleting machine.

An Analysis of Backward Extrusion Process with Torsion (비틀림을 이용한 후방압출 공정의 해석)

  • 허진혁;김영호;박재훈;진영은;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.846-849
    • /
    • 2000
  • In this paper backward extrusion process with lower die rotation was studied to improve the conventional backward extrusion problems ; requirement of large forming machine, the difficulty to selecting of die material caused by high surface pressure, high cost of forming machine caused by improvement of noise and vibration, and etc. In this experiment, model material, plasticine, was used of specimen. The result values of torsional and conventional backward extrusions were analyzed and compared. FE-simulation is used for analysis with DEFPRM-3D. These results show that the torsional backward extrusion is very useful process because this process can obtain the homogeneous deformation, low forming load. Decreasing forming load improves die life and makes it possible to use press of relatively low capacity. Also this process can reduce corner cavity, improve the initial cast-structure, owing to the high deformation and uniform starin distribution.

  • PDF

A Study on the Process Sequence Design of a Tub for the Washing Machine Container (세탁조의 제작공정해석 및 공정개선에 관한 연구)

  • 임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.359-374
    • /
    • 1994
  • Process sequence design in sheet metal forming process by the finite element method is investigated. The forming of sheet metal into a washing machine container is used to demonstrate the design of an improved process sequence which has fewer operations. The design procedure makes extensive use of the finite element method which has simulation capabilities of elastic-plastic modeling. A one-stage process to make an initial blank to the final product is simulated to obtain information on metal flow requirements. Loading simulation for a conventional method is also performed to evaluate the design criteria which are uniform thickness distribution around the finished part and maximum punch load within limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. This specific case conventional process sequence has three forming operations. This specific case can be considered for application of the method and for development of the sequence design methodology in general.

  • PDF

A Study on Roll Forming Technology for Inner Structure Plate with Micro Dimple (미세 딤플 내부구조재 제작을 위한 롤 성형기술 연구)

  • Je T.J.;Kim H.J.;Kim B.H.;Huh B.W.;Seong D.Y.;Yang D.Y.;Choi D.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.326-332
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we made a roll forming machine which progressive forming possible and force measurement for a roll forming of the sheet metal forming. And we designed a roll molding that arrayed of embossing size 3mm in diameter fabricate micro dimple inner structure plate. We carried out forming experiment such as array change and thickness to sts304 sheet. Ultimately, this research developed inner structure plate of high stiffness.

SPIF-A: on the development of a new concept of incremental forming machine

  • Alves de Sousa, R.J.;Ferreira, J.A.F.;Sa de Farias, J.B.;Torrao, J.N.D.;Afonso, D.G.;Martins, M.A.B.E.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.645-660
    • /
    • 2014
  • This paper presents the design and project of an innovative concept for a Single Point Incremental Forming (SPIF) Machine. Nowadays, equipment currently available for conducting SPIF result mostly from the adaptation of conventional CNC machine tools that results in a limited range of applications in terms of materials and geometries. There is also a limited market supply of equipment dedicated to Incremental Sheet Forming (ISF), that are costly considering low batches, making it unattractive for industry. Other factors impairing a quicker spread of SPIF are large forming times and poor geometrical accuracy of parts. The following sections will depict the development of a new equipment, designed to overcome some of the limitations of machines currently used, allowing the development of a sounding basis for further studies on the particular features of this process. The equipment here described possesses six-degrees-of freedom for the tool, for the sake of improved flexibility in terms of achievable tool-paths and an extra stiffness provided by a parallel kinematics scheme. A brief state of the art about the existing SPIF machines is provided to support the project's guidelines.

Development of a Large Surface Mechanical Micro Machining System & Machine (대면적 미세가공시스템 및 장비 개발)

  • Park, Chun-Hong;Oh, Jeong-Seok;Shim, Jong-Youp;Hwang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.761-768
    • /
    • 2011
  • The large surface micro machining system includes the equipments and processes for manufacturing the ultra precision micro patterned products with large surface through the mechanical machining. Recent major issue on the micro machining technology may be the development of optical parts for the back light unit of display which has the largest market. This special issue makes up with three parts; the large surface micro machining system and machine, machining process and forming process. In this paper, the state-of-the-art and core technology of large surface micro machining system is introduced with focus on the manufacturing technology for the back light unit of LCD TV. Then, some research results on the development of a roll die lathe is introduced which involves the concept of machine design, improvement of thermal characteristics in the spindle system, improvement of relative parallelism and straightness between spindle system and long stroke feed table, machining of micro pitch patterns. Finally, the direct forming process is introduced as the future work in the large surface micro machining field.