• Title/Summary/Keyword: Forming Limit Diagrams

Search Result 20, Processing Time 0.02 seconds

Analytical Study of the Effect of Material Properties on the Formability of Sheet Metals based on the M-K Model (M-K 모델 기반의 박판금속 성형성 평가에서 물성의 영향에 대한 해석적 연구)

  • Lou, Y.;Kim, S.B.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.393-398
    • /
    • 2010
  • This paper investigates the effect of material properties on the formability of sheet metals based on the Marciniak-Kuczynski model (M-K model). The hardening behavior of the material is modeled as the Hollomon model with the strain rate effect. The yield surfaces are constructed with Hosford79 yield function. The material properties considered in this study include the R-value, the strain hardening exponent, the strain rate hardening exponent, and the crystal structure of the material. The effect of the crystal structure on formability is roughly expressed as the change of the yield surface by varying the value of the exponent in Hosford79 yield function. Results show that the R-value affects neither the magnitude nor the shape of right hand side of forming limit diagrams (FLDs). Higher strain hardening exponent and higher strain rate hardening exponent improve the formability of sheet metals because they stabilize the forming processes.

Effects of Laser Welding Speed on the Tensile and Forming Characteristics of Tailored Blanks (레이저 용접 속도가 테일러드 블랭크의 인장 특성 및 성형성에 미치는 영향)

  • 표창률
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2000
  • Forming characteristics of tailored blank are mostly effected by the welding method. Recently, laser welding is widely used for the tailored blank. However, tensile and forming characteristics vary due to welding conditions such as welding speed, heat flux etc. The objective of this paper is to evaluate the effect of welding speed on the tensile and forming characteristics of laser welded tailored blank. For this purpose, tailored blank specimens with different welding speed were prepared and tensile tests were performed. Also forming tests such as LDH and OSU test, were performed to evaluate the effect of welding speed on the forming characteristics. Finally, forming limit diagrams were obtained for different welding speed.

  • PDF

A Theoretical Investigation of Forming Limits of Voided Anisotropic Sheet Metals (기공을 포함한 이방성 판재의 성형한계 예측)

  • You Bongsun;Yim Changdong;Kim Youngsuk;Won Sungyeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1139-1145
    • /
    • 2005
  • Most failures of ductile materials in metal forming processes occurred due to material damage evolution - void nucleation, growth and coalescence. In this paper, the modified yield function of Liao et al in conjunction with the Hosford's yield criterion is studied to clarify the plastic deformation characteristic of voided anisotropic sheet metals. The void growth of an anisotropic sheet under biaxial tensile loading and damage effect of void growth on forming limits of sheet metals are investigated. Also the characteristic length defining the neck geometry is introduced in M-K model to incorporate the effect of triaxial stress in necked region on forming limits. The forming limits theoretically predicted are compared with experimental data. Satisfactory agreement was obtained between the predictions and experimental data.

Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy (판재의 이방성을 고려한 연성파단모델 개발)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping of Spacer Grids of Nuclear Fuel Rods (핵연료 지지격자 성형을 위한 Zircaloy-4와 Zirlo 판재의 성형한계도 예측)

  • Seo, Yun-Mi;Hyun, Hong-Chul;Lee, Hyung-Yil;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.889-897
    • /
    • 2011
  • In this work, we investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile and anisotropy tests were performed to obtain stress-strain curves and anisotropic coefficients. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following NUMISHEET 96. Theoretical FLD depends on FL models and yield criteria. To obtain the right hand side (RHS) of FLD, we applied the FL models (Swift's diffuse necking, M-K theory, S-R vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left hand side (LHS) of FLD. To consider the anisotropy of sheets, the yield criteria of Hill and Hosford were applied. Comparing the predicted curves with the experimental data, we found that the RHS of FLD for Zircaloy-4 can be described by the Swift model (with the Hill's criterion), while the LHS of the FLD can be explained by Hill model. The FLD for Zirlo can be explained by the S-R model and the Hosford's criterion (a = 8).

Development of Automobile One-piece Lower-Arm Part by Thermo-Mechanical Coupled Analysis (열-소성 연계 해석을 이용한 자동차 로어암 부품 개발)

  • Son, H.S.;Kim, H.G.;Choi, B.K.;Cho, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Hot Press Forming (HPF), an advanced sheet forming method in which a high strength part can be produced by forming at high temperature and rapid cooling in dies, is one of the most successful forming process in producing components with complex geometric shape, high strength and a minimum of springback. In order to obtain effectively and accurately numerical finite element simulations of the actual HPF process, the flow stress of a boron steel in the austenitic state at elevated temperatures has been investigated with Gleeble system. To evaluate the formability of the thermo- mechanical material characteristics in the HPF process, the FLDo defined at the lowest point in the forming limit diagrams of a boron steel has been investigated. In addition, the simulation results of thermo-mechanical coupled analysis of an automobile one-piece lower-arm part are compared with the experimental ones to confirm the validity of the proposed simulations.

  • PDF

Formability Test of Boron Steel Sheet at Elevated Temperature for Hot Stamping (핫스탬핑용 보론강의 고온 성형한계선도 평가 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 2017
  • The hot stamping process is an innovative forming method that could prevent the cracking of high strength steel sheets. The formability test of boron steel sheet using forming limit diagrams at elevated temperature is very complicated and time consuming job. In this paper, an alternative test method to evaluate the formability of boron steel in hot stamping has proposed. It measured the FLD0 instead of whole strain combinations of FLD with the tensile test machine and specially designed test rig. Test results shows that the proposed test method can simulate the plain strain condition fracture and can make the FLD of boron steel sheet at elevated temperature with less effort.

The Improvement of Formability using the Polar-coordinate FLD with Strain Path Independence (경로의존성 없는 극좌표계 성형한계도를 이용한 판재 성형성 향상 기술)

  • Bae, M.K.;Hong, S.H.;Choi, K.Y.;Yoon, J.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.348-353
    • /
    • 2015
  • The PEPS(Polar-coordinated Effective Plastic Strain) FLD(Forming Limit Diagram), a new type of FLD based on a polar representation of the EPS(Effective Plastic Strain), appears to be an effective solution to the problem of non-linear strain path effects. This method has the advantages of the familiar strain-based diagram for linear loading, but without the strain-hardening limitations of the stress-based diagram, or non-intuitive aspects of alternate Cartesian diagrams based on effective plastic strain. In the current study, the PEPS FLD was applied to the development process of an aluminum automobile-body panel, including the necking or crack prediction, die design, and die modification. As a result, the PEPS FLD provided improved formability of aluminum sheet as compared to deriving the potential formability with non-linearity.

Formability for AA5182 sheet and AA5182/PP/AA5182 sandwich sheet (AA5182판재와 AA5182/PP/AA5182 샌드위치 판재의 성형성 평가)

  • 김대용;김기주;정관수;신광선;유동진
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.81-90
    • /
    • 2000
  • For automotive applications, a sandwich sheet which was made of a 5182 aluminum alloy (AA5182) sheet and a polypropylene (PP) sheet, AA5182/PP/AA5182, has been developed. In order to evaluate its formability, the forming limit diagrams (FLD) of the 5182 aluminum alloy sheet with 0.2mm thickness and the sandwich sheet with 1.2mm thickness have been obtained based on the modified Marciniak-Kuczynski (M-K) theory. To account for the anisotropy of the sheet, Hill's 1948 yield function has been applied. The FLD of the sandwich sheet was predicted to be better than that of the AA5182 sheet, which was well confirmed by experiments.

  • PDF

The formability of high strength steel plate applied TRB for stamping (스탬핑용 고강도강 TRB 판재의 성형 특성)

  • Park, Hyun-kyung;Jeong, Ji-Won;Lee, Gyung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.184-189
    • /
    • 2018
  • Recently, research on lightweight automobiles is increasing continuously to respond to the high safety standards and environmental regulations. The application of high strength steel is one of the effective methods for developing lightweight car bodies. A TWB (Tailor Welded Blank) is major method that allows partial high strength with light weighting using a multi-thickness and multi-material welded blank. On the other hand, additional welding process is required to prepare the blank and quality control for the welding process also required. To secure this point, the TRB (Tailor Rolled Blank) method was suggested. In the TRB method, the thickness of sheet is controlled by the rolling presses and the production efficiency is much higher than welding in TWB methods. In this study, the formability of high strength TRB steel plate was analyzed to examine the rolling effect of the blank. The formability of the specimen was tested using 0.8 and 1 mm thick steel sheets for the TRB plate. The strain was analyzed by the digital image sensing of grid markings on the specimen and the forming limit diagram was calculated. An Erichsen test for the 0.8 and 1 mm thick TRB specimens was carried out and the formability was investigated by comparing with FE analysis.