• Title/Summary/Keyword: Forming Limit Diagram

Search Result 102, Processing Time 0.031 seconds

An Effective Design Method of Stamping Process by Feasible Formability Diagram (가용 성형한계영역을 이용한 스템핑 공정의 효율적 설계방법)

  • Cha, Seung-Hoon;Lee, Chan-Joo;Lee, Sang-Kon;Kim, Bong-Hwan;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.108-115
    • /
    • 2009
  • In metal forming technologies, the stamping process is one of the significant manufacturing processes to produce sheet metal components. It is important to design stamping process which can produce sound products without defect such as fracture and wrinkle. The objective of this study is to propose the feasible formability diagram which denotes the safe region without fracture and wrinkle for effective design of stamping process. To determine the feasible formability diagram, FE-analyses were firstly performed for the combinations of process parameters and then the characteristic values for fracture and wrinkle were estimated from the results of FE-analyses based on forming limit diagram. The characteristic values were extended through training of the artificial neural network. The feasible formability diagram was finally determined for various combinations of process parameters. The stamping process of turret suspension to support suspension module was taken as an example to verify the effectiveness of feasible formability diagram. The results of FE-analyses for process conditions within fracture and wrinkle as well as safe regions were in good agreement with experimental ones.

Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming (무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구)

  • Lee S. J.;Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

An Investigation of the Formability of Thermoplastic Composite in Biaxial Stretch Forming (열가소성 복합재료의 2축 인장성형시 성형성에 관한 연구)

  • 이중희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.127-134
    • /
    • 1997
  • 열가소성 복합재료는 고상 성형법에 의해 저렴한 가격으로 부피가 튼 제품의 제조에 널리 사용될 수 있어 아주 좋은 전망을 가지고 있다. 그러나, 이러한 재료의 성형성에 대해선 아직 잘 알려지지 않았다. 본 연구의 첫번때 주안점은 2축 인장성형시 성형성에 대한 연구에 두었다. 실험에 사용된 재료는 임의의 방향으로 위치한 유리 섬유를 중량비로 20, 35, 40% 함유한 폴리프로필렌이다. 성형시험은 75 .deg. C 에서 150 .deg. C 사이의 온도에서 행했으며, 펀치 속도는 0.01cm/sec 와 1cm/sec 에서 행했다. 2축 인장성형에서 측정된 한계 변형률(Limiting Strain)은 Marciniak 불완전성 (Imperfection) 이론에 근거한 예견치외 비교되었다. 이론치와 실험치가 잘 일치함을 보였으며, 성형한계선도(Forming Limit Diagram) 로써 결과들을 요약하였다. 성형한계 변형률은 성형온도와 성형속도에 의해 크게 영향을 받는다는 것을 보인다. 이러한 결과들은 적절한 성형조건이 선택된다면 열가소성 복합재료의 인장성형은 실제 상업적으로 이용하기에 충분한 성형성을 갖는다는 것을 보인다.

  • PDF

The Improvement of Formability using the Polar-coordinate FLD with Strain Path Independence (경로의존성 없는 극좌표계 성형한계도를 이용한 판재 성형성 향상 기술)

  • Bae, M.K.;Hong, S.H.;Choi, K.Y.;Yoon, J.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.348-353
    • /
    • 2015
  • The PEPS(Polar-coordinated Effective Plastic Strain) FLD(Forming Limit Diagram), a new type of FLD based on a polar representation of the EPS(Effective Plastic Strain), appears to be an effective solution to the problem of non-linear strain path effects. This method has the advantages of the familiar strain-based diagram for linear loading, but without the strain-hardening limitations of the stress-based diagram, or non-intuitive aspects of alternate Cartesian diagrams based on effective plastic strain. In the current study, the PEPS FLD was applied to the development process of an aluminum automobile-body panel, including the necking or crack prediction, die design, and die modification. As a result, the PEPS FLD provided improved formability of aluminum sheet as compared to deriving the potential formability with non-linearity.

Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank (AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발)

  • Jeon, S.J.;Lee, M.Y.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

Loading Path Optimization in Aluminum Tube Hydroforming using Response Surface Method (반응표면법을 이용한 알루미늄 튜브 하이드로포밍의 하중경로 최적화)

  • Lim, H.T.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.314-317
    • /
    • 2007
  • Automotive rear subframe of aluminum tube was developed by using hydroforming process, based on the numerical analysis and physical tryouts. In the previous study, the effect of prebending was evaluated on the basis of forming limit diagram which had been obtained from free bulging, T-shape forming and cross-shape forming, using the developed tube hydroformability testing system. In order to get the sound products, appropriate internal pressure is to be imposed corresponding to the axial feeding. In this study, the loading path, the combination of internal pressure and axial feeding during the process, was optimized to ensure minimum thickness variation and dimensional accuracy, by using response surface method.

  • PDF

Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet (AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구)

  • Kim, S.H.;Park, K.D.;Jang, J.H.;Kim, K.T.;Lee, H.W.;Lee, G.A.;Kim, K.P.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.466-472
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

Application of Failure Criteria in Aluminum Sheet Forming Analysis (알루미늄 판재 성형해석 시 파단 모델 적용)

  • Kim, Ki-Jung;Nguyen, Ngoc-Trung;Kim, Dae-Young;Kim, Heon-Young
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

A Study on the Development of Lancing Process Method Using Forming Analysis (성형해석을 이용한 랜싱공법 개발에 관한 연구)

  • Jung, Dong-Won;Ko, Dae-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.171-177
    • /
    • 2008
  • The characteristics of sheet metal process are little loss of material during process, the short processing time and the excellent price and strength. It has been widely used in autobody, electronic components, aircraftbody, etc. Lancing is a press operation in which a single-line cut or slit is made on part way across the strip stock, without removing any metal. In this paper, we examined the validity of finite element method analysis on the automobile CTR-PLR -L/R stamping process by using the lancing engineering method. As a result, it has shown that the proper lancing engineering method could prevent fracturing by improving sheet metal flow.

Study on Drawing Analysis of an Automotive Front Door and Stamping Die Manufacturing Process (프런트 도어의 드로잉 공정해석과 프레스 금형 제작 공정에 관한 연구)

  • Park, Yong-Guk
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.586-593
    • /
    • 1998
  • In recent automotive industries there has been significant increase in applications of computer simulation to the manufacturing of stamping dies for inner and outer body panels which greatly affect durability and aesthetic quality of automobiles. Enhancement of die quality and reduction of total die manufacturing time and consequently manufacturing cost are the visible outcome. However to successfully apply the result of simulation by a commercial package to the die manufacturing development of an optimal die manufacturing process is required upon the completion of analysis of forte and shortcoming of available sheet metal forming softwares. Based on the results of numerical analysis of front door outer panel forming. this paper evaluates the applicability of simulation results to the real die manufacturing for automotive body panels. Also it attempts to select an optimal die manufacturing process including design machining and tryout. Lastly it discusses the expected effects by adopt-ing the selected process in a real stamping die manufacturing facility.

  • PDF