• 제목/요약/키워드: Forming Height

검색결과 238건 처리시간 0.027초

AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발 (Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank)

  • 전성진;이문용;김병민
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

Ti-6Al-4V합금의 형상 링 압연 공정설계 (Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

관재 하이드로포밍시 공정인자 영향도에 관한 연구 (A Study on the Effects of the Process Parameters for the Tube Hydroforming Process)

  • 김봉준;김정운;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.49-53
    • /
    • 2001
  • Recently hydroforming process became a process which is increasingly applied in the automotive industry. As the hydroforming process is a new technology, there is no abundant data to assist manufacturing the products. To investigate the effects of process parameters on the tube hydroforming process, simple bulging, circular bulging and Tee-fitting tests are performed. The optimal leading path to escape the failure modes(bursting, wrinkling) is determined and the effects of the process parameters, the internal pressure and axial feeding on the product quality, such as thickness distribution, forming height and branch dome shape are investigated.

  • PDF

Advanced Powder Processing Techniques of Ti Alloy Powders for Medical and Aerospace Applications

  • Miura, Hideshi
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.323-331
    • /
    • 2013
  • In this paper, two kinds of advanced powder processing techniques Metal Injection Molding (MIM) and Direct Laser Forming (DLF) are introduced to fabricate complex shaped Ti alloy parts which are widely used for medical and aerospace applications. The MIM process is used to strengthen Ti-6Al-4V alloy compacts by addition of fine Mo, Fe or Cr powders. Enhanced tensile strength of 1030 MPa with 15.1% elongation was obtained by an addition of 4 mass%Cr because of the microstructural modification and also the solution strengthening in beta phase. However, their fatigue strength was lower compared to wrought materials, but was improved by HIP. Subsequently, the effect of feeding layer height (FLH) on the characteristics of the DLF compacts was investigated. In the case of 100 ${\mu}m$ FLH, surface roughness was improved and nearly full density (99.8%) was obtained. Also, tensile strength of 1080 MPa was obtained, which is higher than the ASTM value.

평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향 (Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys)

  • 윤정환;;정관수;양동열;장성기
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

타이타늄합금 형상 링 압연공정 연구 (A Study on Profile Ring Rolling Process of Titanium Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

분무성형 조건에 따른 봉상성형체의 형상변화 (A Study on the Shape Control of Billet in Spray Forming Method)

  • 신돈수;석현광;오규환;나형용;이호인
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1996년도 제6회 학술강연회논문집
    • /
    • pp.209-216
    • /
    • 1996
  • The shape variation of billet was investigated by numerical method and spray forming work with variation of average substrate withdrawal velocity$\bar{V}$, withdrawal velocity change interval $\Delta$t and velocity deviation from average velocity $V_{dev}$. The shape and diameter with large$\bar{V}$, $\Delta$t, $V_{dev}$ vary seriously. When $\bar{V}$, $\Delta$t, $V_{dev}$ are smaller, the shape of billet is more simillar to that of the billet with constant withdrawal velocity. The average diameter of billet is determined by only $\bar{V}$, independent of $\Delta$t, $V_{dev}$. With $\bar{V}$, : 0.2 mm/sec $\Delta$t: 200 sec and $V_{dev}$. : 0.2mm/sec billet of constant diameter 230mm$\times$ height 1000mm were manufactured.

  • PDF

다양한 머리 형상을 갖는 체결구의 냉간 단조 자동 공정 설계 시스템 (Automatic Process Design System for Cold Forging of Fasteners with Various Head Geometries)

  • 김홍석;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.141-148
    • /
    • 1994
  • In order to improve the productivity of cold forging at low production cost, an integrated system's approach is necessary in handling the material preparation and the optimum process design, considering the forming machines, tooling, and operation including quality control. As the first step toward this approach, an expert system for multi-stage cold forging process design for fasteners with various head geometries is developed using Prolog language on IBM 486 PC. For effective representation of the complex part geometries, the system uses the multiple element input, and the forward inference scheme in determination of the initial billet size and intermediate forging steps. In order to determine intermediate steps, the basic empirical rules for extrusion, heading, and trimming were applied. The required forming loads and global strain distributions at each forging step were calculated and displayed on the PC monitor. The designed process sequence drawing can be obtained by AutoCAD. The developed system will be useful in reducing trial and error of design engineers in determining the diameter and height of the initial cylindrical billet from the final product geometry and the intermediate necessary sequences.

  • PDF

알루미늄합금판재 성형한계 예측을 위한 파단모델 적용 (Application of Failure Criteria in Aluminum sheet Forming Analysis)

  • 이은국;김헌영;김형종;김흥규
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.207-207
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

  • PDF

화상처리법을 이용한 곡면변형률 측정 시스템의 개발 (Development of a Surface-Strain Measurement System Using the Image Processing Technique)

  • 한상준;김영수;김형종;오수익
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.575-585
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study which consists of the hardware to capture and to display digital images. and the software to calculate the 3-D informations of grid points from two views. New or improved algorithms for the mapping and establishing correspondence of grid points and elements the camera calibration and the subpixel measurement of grid points are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are com-pared with those obtained by conventional manual methods.

  • PDF