• Title/Summary/Keyword: Formation mechanism

Search Result 2,641, Processing Time 0.025 seconds

Void Formation Mechanism of Thermoset (열경화성 수지의 기공 생성 원인)

  • 강길호;박상윤
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • The formation mechanism of void defect which deteriorate composite's property is various according to each composite process. In this paper, void formation and growth mechanism is analyzed by thermal analysis and GC/MS. We made a vacuum chamber for observing pressure effect. Thermal analysis has been done in various condition. Elements of volatiles during resin curing were turned out by GC/MS. The most of volatiles of polyester were composed of styrene (over 80%) and a small quantity of toluene. In case epoxy resin, butyl glycidyl ether was the main element of volatiles (over 90%). We concluded that the original sites of void growth existed in resin and they were eliminated by vacuum and heating process. And the growth of void was influenced by water, diluents, solvent, and reactants in resin.

A Study on NOx Reduction Mechanism in a Closed Vessel with Opposed Dual Pre-chambers (대향 부연소실이 있는 밀폐연소실 내의 $NO_x$ 저감기구에 대한 연구)

  • Kim, Jae-Heon;Lee, Soo-Gab;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.17-27
    • /
    • 1997
  • It is well known that NOx formation has a strong dependence on the maximum temperature and correspondingly with the maximum chamber pressure of a closed combustion system. However, in a case of impinging-jet-flame (IJF hereafter) combustion with opposed dual pre-chambers, low $NO_x$ formation with high pressure could be achieved, but its mechanism has not been clearly understood so far. In this study, a three-dimensional analysis is adopted to resolve time-variant local properties that might indicate the mechanism of IJF combustion. Numerical results are verified by comparing them with experiments. The IJF combustion in a vessel with no pre-chamber, with single pre-chamber, and with dual pre-chambers is studied. The orifice diameter and the volumetric ratio of pre-chamber are used as geometric parameters. The effects of main-chamber ignition delay time and combustion time of main-chamber, orifice exit velocity, orifice exit temperature, turbulent kinetic energy of main-chamber and spatial distribution of temperature in the latter stage of combustion are investigated. A longer main-chamber ignition delay and a shorter main-chamber combustion time suppress the formation of high temperature region with respect to mean temperature, which consequently results in less NO production.

  • PDF

REACTION OF PAPER PULP AND ALKYL KETENE DIMER BY AGING TREATMENT DURING PAPERMAKIN PROCESS

  • Shin, Young-Doo;Seo, Won-Sung;Cho, Nam-Seok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.83-83
    • /
    • 2000
  • Alkylketene dimer was known as a cellulose reactive or alkaline size because it does not require to fix to the fiber as do the traditional rosin sizes. A proposed sizing mechanism of AKD was the formation of P -ketoester bond between AKD and cellulose which provides the permanent attachment and the orientation of the hydrophobic alkylchains outward. However, some questions about the reaction had arisen and thus, the sizing mechanism of AKD has been a subject of controversy for several decades. The major concern of the controversy is that AKD is really reactive with cellulose or not in the papermaking conditions. In this study, reaction between AKD and pulp fiber was investigated, in order to find out whether AKD forms P-ketoester with pulp fiber during aging under no catalyzed neutral condition with obvious spectroscopic evidence. In addition, effect of aging treatment on the sizing development was studied. It has been disclosed that, in absence of water, AKD reacted with cellulose to form P -ketoester linkage under no catalyzed neutral condition, while, in presence of water, most of AKD was hydrolyzed to a dialkyl ketone or P -ketoacid. In addition, during the aging treatment of AKD-sized paper, its typical IR spectra bands gradually were reduced, completely disappeared after 6hr aging, and formed new absorption bands at 1707cm-' and shoulder peak at 1700cm-' which refer to the typical dialkylketone absorption bands. Therefore, the formation of P -ketoester between AKD and pulp fiber is impossible in the practical papermaking process. It could be suggested that the sizing development of AKD-sized paper is obtained by next two mechanism: 1) formation of a thin-layer of AKD on the fiber surface through melting and spreading of AKD emulsion particles by heat and 2) the hydrolysis of AKD to dialkyl ketone which has higher melting point, during drying and storage of AKD sized papers.

  • PDF

Crystal development and growth mechanism by pretreatment process for zinc crystalline glaze (아연 결정유약 전처리 공정을 통한 결정생성 및 성장의 mechanism)

  • Lee, Chiyoun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.34-41
    • /
    • 2017
  • In this study, the effect on the zinc nuclei crystallization caused by changes preprocessing of the zinc crystalline glaze preparation has been studied. The mechanism of the nuclei formation in the crystalline glaze and development of the nuclei by studying the preprocessing step was explained. The preprocessing step was improved by altering mixing process of the materials prior to sintering: number of sieving dispersion process and ultra-sonication prove tests with various duration of sonication. According to the result, the sieving and sonication of the starting materials facilitated the interface reactions of $ZnO-SiO_2$ from $680^{\circ}C$ where low temperature willemite is formulated, and altered Si bonding for the easier bonding between Zn-Si. In other words, solely sieving was enough to accelerate the formation of willemite in low temperature. When the particles were distributed evenly by sonication, the willemite formation was even more significant.

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

Bar Formation and Enhancement of Star Formation in Disk Galaxies in Interacting Clusters

  • Yoon, Yongmin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2020
  • A merger or interaction between galaxy clusters is one of the most violent events in the universe. Thus, an interacting cluster is an optimum laboratory to understand how galaxy properties are influenced by a drastic change of the large-scale environment. Here, we present the observational evidence that bars in disk galaxies can form by cluster-cluster interaction and the bar formation is associated with star-formation enhancement. We investigated 105 galaxy clusters at 0.015

  • PDF

Formation of SiO:CH Ultra Water Repellent Thin Films by Inductively Coupled RF PECVD

  • Yun, Yong-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.323-328
    • /
    • 2011
  • In this paper, the UWR thin films were prepared by RF PECVD. The relationships between the deposition conditions and the film properties such as morphological and chemical properties of the films were discussed. Moreover, from the analysis of plasma diagnostics using OES, formation mechanism of UWR thin films was discussed.

Mechanism of E. coli RNA polymerase-promoter interactions

  • Roe, Jung-Hye;Record.Jr, M.Thomas
    • The Microorganisms and Industry
    • /
    • v.13 no.1
    • /
    • pp.4-9
    • /
    • 1987
  • The regulation of gene expression in procaryotes is accomplished primarily at the level of transcription. Initiation of transcription is subject to numerous promoter-specific controls which act to ensure coordinate expression of disparate genes. The kinetics of formation of a functional("open") complex at a promoter, prior to the catalytic steps of RNA chain initiation and elongation, is thought to play a major role in controlling the efficiency of transcription of that promotor, since the subsequent processes of nucleotide binding and phosphodiester bond formation are rapid and are not promoter-specific (Mangel and Chamberlin, 1974 Shimamoto et al., 1981)

  • PDF

Absorption Rate of Oxygen in water soluble inks on the Printing Rollers. (인쇄용 로울러에서 수용성 잉크의 산소흡수 속도에 관한연구)

  • JongTaeYoun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.7 no.1
    • /
    • pp.16-30
    • /
    • 1989
  • The anodixed aluminium film by sulfuric acid - method has many pores, the inner, called barrier layers, is active. They have strong absorption of dye. on be other, the absorption of dye is lost by Sealing, the surface is not dyed. We make IMAGE FORMATION on the film by the chemical behavior. This study made sure whether ion absorption is not in the barrier layer by IRRS and ESCA, considerated the mechanism of inage formation.

  • PDF

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.