• Title/Summary/Keyword: Formation loss

Search Result 1,040, Processing Time 0.026 seconds

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Journal of Audiology & Otology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Korean Journal of Audiology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

Full mouth rehabilitation accompanied by phonetic analysis of a patient with reduction of vertical dimension of occlusion, and inaccurate pronunciation due to numerous tooth loss: a case report (다수의 치아 상실로 인해 교합수직고경의 감소와 부정확한 발음을 가진 환자의 발음평가를 동반한 전악 수복 증례)

  • Ji-Young Park;Jong-Jin Kim;Jin Baik;Hyun-Suk Cha;Joo-Hee Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.3
    • /
    • pp.119-132
    • /
    • 2023
  • The loss of posterior occlusal support due to tooth loss is likely to lead to compensatory protrusion and labial tilt of the anterior teeth, which may be accompanied by a deep bite and a decrease in vertical dimension. The patient may suffer from a decrease in masticatory efficiency, inaccurate pronunciation, facial appearance changes, and temporomandibular joint disorder, so stable occlusal formation with support of posterior occlusion and restoration of vertical dimension is necessary. We report the case of a patient with reduction of vertical dimension, and inaccurate pronunciation due to multiple tooth loss who underwent full mouth rehabilitation with increased vertical dimension accompanied by phonetic analysis and achieved satisfactory functional and aesthetic results.

Changes in Available Lysine and Extractable Nitrogen, and Extent of Browning during the Storage of Dried Fish Meat (건어육저장중의 유효 Lysine 및 Ex분질소의 변화와 갈변)

  • LEE Kang-Ho;SONG Dong-Suck;You Byeong-Jin;KIM Mu-Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.271-282
    • /
    • 1982
  • The browning development, mainly through the Maillard reaction, occurring in the dried fish meat products during storage causes reduction of the nutritional value due to the loss of the essential amino acid such as available lysine as well as off -flavor resulting in the deterioration of the food quality thus shortening the shelflife. In the work, the changes in the amount of available lysine, extractable nitrogenous compounds (nonprotein-N, amino-N, trimethylamine oxide, trimethylamine, and free lysine) and development of browning were measured to assess the relationship between the shelflife and the quality loss in dried filefish under the steady state conditions (35,45, and $55^{\circ}C;a_{w}'s$ of 0.44 0.52, 0.65 and 0.75 at each temperature) and fluctuating temperature condition of $35/55^{\circ}C$ will. alternating 7 day periods at each water activity. The results indicated that the amount of available lysine and extractable nitrogenous compounds except TMA decreased rapidly with increasing temperatures and water activities while the rate of available lysine and extractable nitrogenous compounds must be involved in the initial stage of brown pigment formation. The available lysine loss of the dried filefish products stored under the fluctuating temperature conditions was greater than that stored under its fixed mean temperature, $45^{\circ}C$. The activation energies for lysine loss obtained from the Arrhenius plot ranged 6.9 to 4.4 Kcal/mol and $Q_{10}$ values at $40^{\circ}C$ were 1.4 to 1.2. The values for browning were 15.7 to 14.4 Kcal/mol and 2.2 to 2.0 respectively. Shelf-life, defined as the time to reach 0.15 O. D./g solid or the limit of off-color deterioration by browning reaction, was extented longer than the halflife of Iysine loss, actually corresponding $75\%$ loss of available lysine. This suggested that the halflife of lysine loss might not be adequate to assess the shelf-life of the food system with high potential of protein, nonproteinous nitrogen compounds, and lipids.

  • PDF

Rhythmic Gene Expression in Somite Formation and Neural Development

  • Kageyama, Ryoichiro;Niwa, Yasutaka;Shimojo, Hiromi
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.497-502
    • /
    • 2009
  • In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

Oxidative modification of ferritin induced by methylglyoxal

  • An, Sung-Ho;Lee, Myeong-Seon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.147-152
    • /
    • 2012
  • Methylglyoxal (MG) was identified as an intermediate in non-enzymatic glycation and increased levels were reported in patients with diabetes. In this study, we evaluated the effects of MG on the modification of ferritin. When ferritin was incubated with MG, covalent crosslinking of the protein increased in a time- and MG dose-dependent manner. Reactive oxygen species (ROS) scavengers, $N-acetyl-_L-cysteine$ and thiourea suppressed the MG-mediated ferritin modification. The formation of dityrosine was observed in MG-mediated ferritin aggregates and ROS scavengers inhibited the formation of dityrosine. During the reaction between ferritin and MG, the generation of ROS was increased as a function of incubation time. These results suggest that ROS may play a role in the modification of ferritin by MG. The reaction between ferritin and MG led to the release of iron ions from the protein. Ferritin exposure to MG resulted in a loss of arginine, histidine and lysine residues. It was assumed that oxidative damage to ferritin caused by MG may induce an increase in the iron content in cells, which is deleterious to cells. This mechanism, in part, may provide an explanation or the deterioration of organs under diabetic conditions.

Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems

  • Lee, Seon-Hwa;Blair, Ian A.
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.401-410
    • /
    • 2009
  • We have developed a targeted lipidomics approach that makes it possible to directly analyze chiral eicosanoid lipids generated in cellular systems. The eicosanoids, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs) and alcohols (HETEs), have been implicated as potent lipid mediators of various biological processes. Enzymatic formations of eicosanoids are regioselective and enantioselective, whereas reactive oxygen species (ROS)-mediated formation proceeds with no stereo-selectivity. To distinguish between enzymatic and non-enzymatic pathways of eicosanoid formation, it is necessary to resolve enantiomeric forms as well as regioisomers. High sensitivity is also required to analyze the eicosanoid lipids that are usually present as trace amounts (pM level) in biological fluids. A discovery of liquid chromatography-electron capture atmospheric pressure chemical ionization/mass spectrometry (LC-ECAPCI/MS) allows us to couple normal phase chiral chromatography without loss of sensitivity. Analytical specificity was obtained by the use of collision-induced dissociation (CID) and tandem MS (MS/MS). With combination of stable isotope dilution methodology, complex mixtures of regioisomeric and enantiomeric eicosanoids have been resolved and quantified in biological samples with high sensitivity and specificity. Targeted chiral lipidomics profiles of bioactive eicosanoid lipids obtained from various cell systems and their biological implications have been discussed.

a-Tocopherol Inhibits the Accumulation of Phospholipid Hydroperoxides in Rat Tissues Induced by 2, 2'-azinobis Hydrochloride

  • Lim, Beong-Ou;Choue, Ryo-Won;Kim, Jong-Dai;Ju, Hyang-Ran;Park, Dong-Ki
    • Nutritional Sciences
    • /
    • v.6 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • The effect of a-tocopherol on the formation and accumulation of phospholipid hydroperoxides, especially of phosphatidylcholine hydroperoxides, in the tissues of 2, 2 -azobis Hydrochloride (AAPH) - dosed rats was investigated. In a-tocopherol supplemented rats, the activities of glutathione peroxidase, catalase and superoxide dismutase were significantly inhibited, compared with the AAPH group. AAPH treatment led to oxidation of phospholipids in the liver, lungs, brain, plasma and red blood cells (RBC), resulting in a notable increase in phosphatidylcholine hydroperoxide (PCOOH). All tissues of the rats given an $\alpha$-tocopherol supplement showed an attenuation of the stimulating effect of AAPH, leading to low levels of formation of PCOOH. Also, the rats injected with AAPH and a-tocopherol showed relatively normal-appearing hepatocytes, except for a little loss of the granules. With regards to the morphological appearance of the liver, it was observed that oral intakes of a -tocopherol resulted in an antioxidant defense against attacks of peroxyl radicals. Thus, we suggest that a-tocopherol is potentially helpful in protecting membrane phospholipids against oxidative damage in vivo.

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • Kim D. S.;Lee E. J.;Kim J.;Lee S. H.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF