• Title/Summary/Keyword: Formate dehydrogenase

Search Result 26, Processing Time 0.021 seconds

Carbon Monoxide Dehydrogenase in Cell Extracts of an Acinetobacter Isolate (Acinetobacter sp.1의 일산화탄소 산화효소의 특성)

  • 조진원;김영민
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 1986
  • Extracts of CO-autotrophically grown cells of Acinetobacter sp. 1 were shown to use thionin, methylene blue, or 2,6-dichlorophenol-indophenol, but not NAD, NADP, FAD, or FMN, as electron acceptors for the oxidation of CO under strictly anaerobic conditions. The CO dehydrogenase (CO-DH) in the thes bacterium was found to be an inducible enzyme. The enzyme activity was determined by an assay based on the CO-dependent reduction of thionin. Maximal reaction rates were found at pH 7.5 and $60^{\circ}C$, and the Arrhenius plot revealed an activation energy of 6.1 kcal/mol(25.5kJ/mol). THe $K_m$ m/ for CO was $154{\mu}M$. Known metalchelating agents tested had no effects on the CO-DH activity. No divalent cations tested affect the enzyme activity significantly escept $Cu^{2+}$ which suppressed the activity completely. The enzyme was inhibited by glucose and succinate. The same extracts catalyzed oxidation of hydrogen gas and formate with thionin as electron acceptor. The CO-DH of Acinetobacter sp. 1 was to have no immunological relationship with that of Pseudomonas carboxydohydrogena.

  • PDF

Bioconversion of methane to methanol using Methylosinus trichosporium OB3b in the repeated batch reaction system

  • Lee, Sang-Gwi;Kim, Hui-Gon;Kim, Jin-Gwon;Lee, Jung-Heon;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.116-120
    • /
    • 2003
  • Type strain, Methylosinus trichosporium OB3b, was used to convert methane to methanol. To prevent further oxidation of methanol, NaCl and EDTA were used as inhibitors of methanol dehydrogenase. The reaction temperature was $25^{\circ}C$, and the concentrations of cell and sodium formate added to the reaction mixture were 0.6 mg dry cell wt/ml and 20 mM, respectively. During 12hr reaction, 8 mM methanol was accumulated in the reaction mixture. In this reaction $K_m$ and $V_{max}$ values were found to be 532.6 mM and 1.749 mmol/hr, respectively, and the conversion rate was approximately 37%. To increase the concentration of methanol in the medium, a repeated batch reaction was carried out. In this process, methane was injected every eight hours, and the produced methanol concentration was 18 mM.

  • PDF

Effects of the Applications of Clay Minerals on the Early Growth of Red Pepper in Growing Medium (점토광물 처리에 따른 상토에서 고추의 초기생장 효과)

  • Lee, Dong-Gi;Lee, Seok-Eon;Kim, Deok-Hyun;Hong, Hyeon-Ki;Nam, Ju-Hyun;Choi, Jong-Soon;Lee, Moon-Soon;Woo, Sun-Hee;Chung, Keun-Yook
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.463-470
    • /
    • 2012
  • As the advanced seeding technology through use of plug tray for good cultivation of seeds was propagated along with the expansion and development of horticultural industry, the use of bed soils as growing medium has recently been increased. In this study, the effects of the four clay minerals such as illite, phyllite, zeolite, and bentonite on the early growth of red pepper in the bed soil were investigated. Furthermore, proteome analysis for the leaf and stem samples of red pepper treated with only illite was performed. Of the seedling cultured, the healthy and regular size seeds were selected and cultivated in the pots, after they were treated with four clay minerals. The experiment was performed during the whole six weeks in the glasshouse of the Chungbuk National University. The growth lengths, fresh and dry weights of red pepper were significantly higher in the treatments of illite, phyllite, zeolite, and bentonite than in the control. In addition, the uptake of $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were higher in the treatment of illite, phyllite, zeolite, and bentonite than in the control. The 2-DE patterns for the red pepper by the applications of illite, phyllite, zeolite, and bentonite were similar to each other. Therefore, compared to the samples of control, the proteome analysis for the samples of red pepper treated by only illite were performed. Proteome analysis for red pepper showed that plastid fructose-1, 6-bisphosphate aldolase class 1, aldolase, and glyceraldehydes 3-phosphate dehydrogenase, all of which were involved in the energy metabolism, were highly expressed in leaf tissue by illite treatment. In stem tissue, NAD-dependent formate dehydrogenase involved in energy metabolism, potassium transport protein, and GIA/RGA-like gibberellins response modulator were highly expressed. Based on the results obtained from the proteome analysis, it appears that the proteins specifically and differentially expressed on the illite treatment may be involved in the enhanced growth of red pepper. The identification of some proteins involved in the response of vegetable crops to the treatment of clay mineral can provide new insights that can lead to a better elucidation and understanding of mechanism on their molecular basis.

A Methylobacillus Isolate Growing Only on Methanol (메탄올만 이용하여 성장하는 Methylobacillus의 분리 및 특성)

  • 김시욱;김병홍;김영민
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.250-257
    • /
    • 1991
  • An obligate methanol-oxidizing bacterium, Methylobacillus sp. strain SK1, which grows only on methanol was isolated from soil. The isolate was nonmotile Gram-negtive rod. It does not have internal membrane system. The colonies were small, whitish-yellow, and smooth. The guanine plus cytosine content of the DNA was 48 mol%. Cellular fatty acids consisted predominantly of large amounts of straight-chain saturated $C_{16:0}$ acid and unsaturated $C_{16:1}$ acid. The major ubiquinone was Q-8, and Q-10 was present as minor component. The cell was obligately aerobic and exhibited catalase, but no oxidase, activity. Poly-.betha.-hydroxybutyrate, endospores, or cysts were not observed. the isolate could grow only on methanol in mineral medium. Growth factors were not required. The isolate was unable to use methane, formaldehyde, formate, methylamine, and several other organic compounds tested as a sole source of carbon and energy. Growth was optimal at 35.deg.C and pH 7.5. It could not grow at 42.deg.C. The doubling time was 1.2h at 30.deg.C when grown with 1.0%(v/v) methanol. The growth was not affected by antibiotics inhibiting cell wall synthesis and carbon monoxide but was completely suppressed by those inhibiting protein synthesis. Methanol was found to be assimilated through the ribulose monophosphate pathway. Cytochromes of b-, c-, and o- types were found. Cell-free extracts contained a phenazine methosulfate-linked methanol dehydrogenase activity, which required ammonium ions as an activator. Cells harvested after the late exponential phase seemed to contain blue protein.ein.

  • PDF

Characterization and Methanol Biosynthesis of a Methane-Oxidizing Bacterium, Methylomonas sp. SM4, Isolated from Rice Paddy Field Soil (논에서 분리한 메탄산화세균 Methylomonas sp. SM4의 특성과 메탄올 생합성)

  • Park, Sung Min;Madhavaraj, Lavanya;Kim, Si Wouk
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.124-132
    • /
    • 2017
  • A methane-oxidizing bacterium was isolated from rice paddy field soil around Jeollanam-do province, Korea, and characterized. The isolate was gram-negative, orange pigmented and short rod ($1.1-1.2{\times}1.6-1.9{\mu}m$). It was catalase and urease-negative but oxidase-positive. The strain utilized methane and methanol as sole carbon and energy sources. It had an ability to grow with an optimum pH 7.0 and an optimum growth temperature $30^{\circ}C$. The strain was resistant to antibiotic polymyxin B but sensitive to streptomycin, kanamycin, ampicillin, chloramphenicol and rifampicin. The isolate required copper for their growth with concentration range of $2-25{\mu}M$, with an optimum of $10{\mu}M$. Under optimal culture condition, specific cell growth rate and generation time were found to be $0.046hr^{-1}$ and 15.13 hr, respectively. Phylogenetic analysis based on 16S rDNA sequences indicated that the strain formed a tight phylogenetic lineage with Methylomonas koyamae with a value of 99.4% gene sequence homology. So, we named the isolate as Methylomonas sp. SM4. 8.6 mM methanol was accumulated in the reaction mixture containing 70 mM sodium formate and 40 mM $MgCl_2$ (MDH inhibitor) under atmosphere of methane:air (40:60) mixture for 24 hr at $30^{\circ}C$.

Photocatalytic Systems of Pt Nanoparticles and Molecular Co Complexes for NADH Regeneration and Enzyme-coupled CO2 Conversion

  • Kim, Ellen;Jeon, Minkyung;Kim, Soojin;Yadav, Paras Nath;Jeong, Kwang-Duk;Kim, Jinheung
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2013
  • Natural photosynthesis utilizes solar energy to convert carbon dioxide and water to energy-rich carbohydrates. Substantial use of sunlight to meet world energy demands requires energy storage in useful fuels via chemical bonds because sunlight is intermittent. Artificial photosynthesis research focuses the fundamental natural process to design solar energy conversion systems. Nicotinamide adenine dinucleotide ($NAD^+$) and $NADP^+$ are ubiquitous as electron transporters in biological systems. Enzymatic, chemical, and electrochemical methods have been reported for NADH regeneration. As photochemical systems, visible light-driven catalytic activity of NADH regeneration was carried out using platinum nanoparticles, molecular rhodium and cobalt complexes in the presence of triethanolamine as a sacrificial electron donor. Pt nanoparticles showed photochemical NADH regeneration activity without additional visible light collector molecules, demonstrating that both photoactivating and catalytic activities exist together in Pt nanoparticles. The NADH regeneration of the Pt nanoparticle system was not interfered with the reduction of $O_2$. Molecular cobalt complexes containing dimethylglyoxime ligands also transfer their hydrides to $NAD^+$ with photoactivation of eosin Y in the presence of TEOA. In this photocatalytic reaction, the $NAD^+$ reduction process competed with a proton reduction.