• Title/Summary/Keyword: Forging-Defects

Search Result 95, Processing Time 0.027 seconds

The Study of void Closing Behavior in Upset Forging of Large Ingot (대형 잉곳의 업셋 단조에서의 기공 압착 거동에 관한 연구)

  • Lee K. J.;Bae W. B.;Cho J. R.;Kim D. K.;Kim J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.406-409
    • /
    • 2005
  • In the forging operation of large ingot two break-down process are upsetting and cogging. The first purpose of upsetting is to ensure sufficient forging ratio for subsequent cogging operations and consolidate the voids along the centerline. The second purpose is related to improve the physical properties for a final product. Voids which are generated during the casting process can be one of the decisive defects of materials. So it is necessary to know the standard of Judgment for void-closure in upsetting operation. In practical conditions, FEM analysis(DEFORM 2D 8.1) was carried out to decide how much effective strain has influence on void-closure. It is finally suggested that the function consists of the effective strain of analysis data and the area rate of void.

  • PDF

Microstructure Change of Large Cast-forged Product by Forging and Heat Treatment Conditions (단조/열처리 공정이 대형 주단조품의 조직변화에 미치는 영향)

  • Lee, M.W.;Lee, Y.S.;Lee, S.W.;Lee, D.H.;Kim, S.S.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.458-464
    • /
    • 2009
  • Thermal energy control is a important factor to control properties of large sized product in ingot-forging. Good control of thermal energy helps to increase characteristics and eliminate defects of large cast-forged part, such as large sized forged shell. We have studied about not only large size ring forging process and after heat treatment process by FEM simulation. Changes of temperature and microstructure for forged shell were predicted according to different heat treatment conditions. Therefore, we can choose the proper heat treatment condition by FEA. The sectional properties confirmed by practical experiment and evaluation have presented possibilities of process design by computational analysis.

Process Design of Isothermal Forging for Three-Dimensional Ti-6Al-4V Wing-Shape (Ti-6Al-4V 합금 3D 날개형상의 항온단조 공정설계)

  • Yeom J. T.;Park N. K.;Lee Y. H.;Shin T. J.;Hong S. S.;Shim I. O.;Hwang S. M.;Lee C. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.126-132
    • /
    • 2005
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The main design priorities were to minimize forging loads and to distribute strain uniformly in a given forging condition. The FE simulation results for the final process design were compared with the isothermal forging tests. The instability of deformation was evaluated using a processing map based on the dynamic materials model(DMM), including flow stability criteria. Finally, a modified process design for producing a uniform Ti-6Al-4V wing product without forming defects was suggested.

Manufacturing of Product by Semi-Solid Forging (반용융 단조품의 제조)

  • Park, Hyung-Jin;Kang, Chung-Gil;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 1999
  • The semi-solid forging is a new forging technology in which the billet is heated to the semi-solid state coexisting liquid and solid phase for making globular microstructure and subsequently formed. As the semi-solid forging is compared with conventional casting such as die casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. Simutaneously, its mechanical properties are improved by globular microstructure and the lower temperature of the slug causes the cycle time of manufacturing to be shortened and the die life to be lengthened. As it is compared with conventional cold and hot forging, it is possible to minimize the equipment of production owing to a lower forming load and reduce the number of process by a followed treatment for complex shaped product. Therefore it is needed to confirm the quality of a semi-solid forged product by defining its characteristics quantitatively under these advantages. This paper investigates the formability of a master cylinder by its forming variables. And the microstructural characteristics and mechanical property of it is also studied.

  • PDF

Study on the Cold Forging Process of Aluminum Pipe Yoke using Sliding Die for Reducing Friction (마찰저감을 위한 슬라이딩 금형을 적용한 알루미늄 파이프 요크 냉간 단조공정에 관한 연구)

  • S. M. Lee;I. K. Lee;S. Y. Lee;;J. W. Park;W. S. Hwang;Y. H. Moon;S. K. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2023
  • The aim of this study is to manufacture an aluminum pipe yoke of automotive steering system for lightweight. In a multistage cold forging process for aluminum pipe yoke, the surface defects frequently occur due to excessive deformation or friction during extrusion process for forming hollow pipe part. It is import to reduce the friction between the material and the forging die. This study investigated a multistage forging process with sliding die to reduce friction for aluminum pipe yoke. After evaluating by FE analysis, the forging experiment with the sliding die was carried out. As a result, it was possible to manufacture a sound aluminum pipe yoke.

A Study on the Improvement of Mechanical Properties for an Engine Piston (엔진피스톤의 기계적 성질의 향상에 관한 연구)

  • 김영호;배원병;변흥석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.113-116
    • /
    • 1995
  • In this experimental study,aluminum hotforging was conduct to get superior pistion to cast piston. Cast structure of billet is destroyed, harmful defects is removed by forging process. We proposed the direction od die design by observing formability of product according to die shape. The microstructure of forged products with different preform was investigated to determine inital billet shape. We proposed appropriate heat treatment condition for improvement of mechanical properties.

  • PDF

Effect of Radial Parameters in Cogging Process on Void Closure for Large Forged Products (단강품 기공의 압착성 향상을 위한 레이디얼 단련변수의 영향)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, J.H.;Baek, D.K.;Choi, S.K.;Park, H.J.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.67-70
    • /
    • 2008
  • This paper deals with the effect of radial parameters in cogging process such as reduction in height (Rh) and rotational angle ($\theta$) of a billet on a void closure for large forged products. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products, using a press with limited capacity and the sizes of the ingots becoming larger. Consequently, it is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; $\emptyset$ 6.0 mm and $\emptyset$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. Also open void and closed void in the ingot were tackled to show the differentiation of closing process of internal voids with respect to void sizes. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process.

  • PDF

Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계)

  • 김홍석;윤재웅;송종호;문인석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.210-215
    • /
    • 2003
  • A terminal pin, which is a part of high-voltage capacitors, has a head section of plate-shaped geometry with 0.8 thickness. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this paper, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, the geometry of the initial billet was determined by three dimensional finite element analysis in order to avoid defects in blanking process and intermediate forging processes were designed by applying design rules and two dimensional FE analysis. In addition, cold forging tryouts were conducted by using the die sets which were manufactured based on the designed process sequence.

  • PDF

Development of an Unparalleled Shape Weld Nut Optimized by Forging Analysis Tool (단조 해석을 통한 비대칭 날개면 용접 너트의 최적 공정 설계)

  • Park, J.H.;Seo, J.Y.;Seol, J.Y.;Hwang, W.S.;Lee, K.H.;Kim, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.81-86
    • /
    • 2018
  • In the cold forming process, it is not easy to fabricate a asymmetric type nut, due to the difficulty in the exact prediction of metal-flow. As we have identified, in that case, it often results in the various forging defects such as burrs, and an incomplete shape, as well as other problems because of this issue. In the current study, we introduce the development of an unparalleled shape Weld Nut by using a forging analysis tool (AFDEX). For the multi-forming machine, the optimized shapes of each intermediate product (step product) could be found by the use of a model for the prediction and analysis of various types, sizes and heights. Chiefly, forging tools were prepared based on the simulation results and an unparalleled shape could be prepared at one time without any burrs, incomplete shape and size.

Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine (선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계)

  • Hwang, B.C.;Lee, W.H.;Bae, W.B.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.