• Title/Summary/Keyword: Forging of Spur Gear

Search Result 37, Processing Time 0.023 seconds

Prediction of Deformation and Load in Gear Forging (기어단조시 변형과 하중의 예측)

  • 박종진;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.156-164
    • /
    • 1996
  • As high capacity and precision forging presses have become available, it is possible to manufacture gears by forging technology. In gear manufacturing by forging, however, there are problems of designs of ides and preforms. In the present paper, two exampels are presented to show how the rigid plastic finite element method can be utilized to overcome the problems. The examples are spur gear forging and interanl-apline gear forging. Both analyses are three dimensional using eight node linear block elements with approximation that the involute curve can be represented by lines and arcs. Results of the analyses include metal flow in dies and required load during forging which aid to decide proper designs.

  • PDF

FE Analysis to predict the changes of involute-curve during cold-forging (냉간 단조시 인볼류트 곡선 변화 예측을 위한 유한요소 해석)

  • 천세환;이정환;이영선;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.34-38
    • /
    • 2003
  • In metal working, cold forging that has profit to satisfy dimension accuracy is using in various manufacturing products. Recently, most of the interest thing is precision forging of gear. Gear forging product is more strength than broaching gear, and it has many advantages with reduction of factory expenses. The reason of difficulty to improve accuracy of gear dimension compare to another products is the dimension accuracy is very high, approximately 10$\mu\textrm{m}$, and because die of involute teeth and elastic strain of forged tool differ from standard curve. This paper represent quantitative analysis of die and teeth of forged tool, namely difference of curves, with experiments and analyze the factor of dimension gap, finally, will design compensated involute curve.

  • PDF

A Study on Development of Cold Forward Extrusion Process for Helical Gears of Automotive Transmissions (자동차 변속기용 헬리컬 기어의 냉간전방압출 공정 개발에 관한 연구)

  • Kim, H.S.;Lee, I.H.;Choi, S.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.485-490
    • /
    • 2011
  • The application of helical gears in crucial parts of automotive transmissions has been steadily increasing due to their higher power transfer performance compared to spur gears. However, the traditional gear manufacturing methods such as hobbing and deburring require large cycle times with expensive production lines so that there have been intensive efforts trying to manufacture gears via forging processes. Although forging processes for spur and bevel type gears have been developed on the practical level, the manufacturing of helical gears is still dependent on the traditional cutting process. Therefore, this paper seeks to develop a cold forward extrusion process for the helical gear with the pitch diameter of 43.5mm and a helix angle of $18.4^{\circ}$. A forward extrusion process was used due to the relatively small diameter of the target geometry. The material deforming behavior influenced by the die geometry was examined by using CAE analysis. Finally, it was found that the helical gear manufactured by the developed extrusion process satisfied the dimensional accuracy and mechanical characteristics for automotive transmissions.

A Study on the Forging of Gears with lnternal Serrations (내부세레이션홈이 존재하는 외치차 단조에 관한 연구)

  • 최종용;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.633-637
    • /
    • 1995
  • Numerical calculation tool for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear, sequare spline, internal serrations. A complex calcuation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper, the workpiece with both external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool form combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with other and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

A Sudy on the Cold Forging of Spur Gears form Hollow Cylindrical Billets (중공소재에 의한 스퍼어기어의 냉간단조에 관한 연구)

  • Choi, J.C.;Kim, C.H.;Hur, K.D.;Choi, Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.63-72
    • /
    • 1995
  • Closed-die forging of spur gears with hollow cylindrical billet has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent the forging die profile. In the analysis, the deformation region has been divided into nine zones. A constant frictional stress has been assumed on the contacting surfaces. Utilizing the formulated velocity field, numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth and friction factor, on the forging of spur gears. Hardness and accuracy of forged gears are measured. The following results have been obtained: (1) It is verified that an axisymmetric deformation zone exists between root circle and center of gear through forged gears. (2) The average relative forging pressure is predominantly dependent on the number of teeth and increases near the final filling stage as the addendum modification coefficient increases. (3) Close agreement was found between the predicted values of forging load and those obtained from experimental results.

  • PDF

Dimensional Changes and Residual Stress of Spur Gear According to the Manufacturing Processes -Comparison of Cold Forging Part with Machining Part- (스퍼기어의 제조공정에 따른 치수변화와 잔류응력에 관한 연구 -냉간 단조기어와 기계가공기어 비교-)

  • Kwon, Y.C.;Lee, J.H.;Lee, C.M.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.575-581
    • /
    • 2007
  • The high dimensional accuracy of the cold forged part could be acquired by the accurate dimensional modification for the die, which is, the dimensional changes from the die through forged part to final part after heat treatment were considered. The experimental and FEM analysis are performed to investigate the dimensional changes from the die to final part on cold forged part, comparing with the machined gear. The dimension of forged part is compared with the die dimension at each stage, such as, machined die, cold forged part, and heat-treated-part. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the $DEFORM-3D^{TM}$. The analyzed residual stress of forged part is considered into the FE-analysis for heat treatment using the $DEFORM-HT^{TM}$. The effects of residual stress affected into the dimensional changes could be investigated by the FEA. Each residual stress of gears was measured practically by laser beam type measurement.

Fabrication of Micro Spur Gear in Nano Grained Al Alloy

  • Lee, Won-Sik;Jang, Jin-Man;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.778-779
    • /
    • 2006
  • Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at $300^{\circ}C$, the Al alloy showed stain softening phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of $200{\mu}m$ and pitch of $250{\mu}m$) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test

  • PDF

A study on the forming process and formability improvement of clutch gear for vehicle transmission (자동차 트랜스미션용 클러치 기어의 성형 공법 및 성형성 향상에 관한 연구)

  • Lee K. O.;Kang S. S.;Kim J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.184-187
    • /
    • 2005
  • Forging process is one of the forming process and is used widely in automobile parts and manufacture industry. Especially the gears like spur gear, helical gear, bevel gear were produced by machine tool, but recently they have been manufactured by forging process. The goal of this study is to study forming process with data obtained by comparison between forward extrusion and upsetting simulation results and formability improvement by various heat treatment conditions. By analysis data of 3D FEM by upsetting and forward extrusion forming, the forming process of clutch gear develops using data based on 3D FEM analysis. Through tensile test using specimens by various heat treatment conditions, the optimal heat treatment condition is obtained by comparison the results of tensile test.

  • PDF

A Study on Extrusion of Helical Gears by a Two-step Process (2단계공정을 이용한 헬리컬기어 압출에 관한 연구)

  • Jung S. Y.;Park J. H.;Kim C.;Kim C. H.;Choi J. C.;Choi S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.04a
    • /
    • pp.85-91
    • /
    • 2002
  • Of all the many types of machine elements which exist today, gears are among the most commonly used. Many researches have been done to manufacture helical gears by cold forging and extrusion. Although cold forging and extrusion were applied to some bevel, spur, and helical gears, problems in connection with reducing forming load and tool life still make it difficult for the related methods to be commercialized. In this study, focusing on reducing load in forming helical gears, extrusion of helical gears by a two-step process is proposed. The process is composed of an extrusion step of spur gears used as preform and a torsion step of the preform to make helical gears. Upper-bound analysis for the two-step process is performed and compared with results of experiments. The newly proposed method can be used as an advanced forming technique to remarkably reduce the forming load and replace the conventional forming process of helical gears.

  • PDF