• 제목/요약/키워드: Forging Pressure

검색결과 115건 처리시간 0.02초

합금강을 이용한 스퍼기어의 정밀 냉간 단조 (Precision Cold Forging of Spur Gear Using the Alloy Steel)

  • 최재찬;최영
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF

합금강을 이용한 스퍼기어의 정밀 냉간 단조 (Precision Cold Forging of Spur Gear Using the Alloy Steel)

  • 최재찬;최영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.172-175
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging

  • PDF

마그네슘합금 판재 정밀성형을 위한 판단조 공정 연구 (Plate Forging Process for Near-net Shaping of Mg-alloy Sheet)

  • 송용현;김세종;이영선;윤은유
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.35-42
    • /
    • 2021
  • Magnesium alloys are used in electronic devices such as laptops due to their lightweight features as well as vibration absorption and electromagnetic shielding properties. However, the precision of electronics is limited by the large number of small and precise ribs, the cost-effective manufacture of which requires appropriate technology. Plate forging is an efficient manufacturing process that can address these challenges. In this study, plate forging of magnesium alloys was investigated specifically for the fabrication of laptop cover. The plate forging process with back-pressure was used for near-net shape formation. Finite element analysis was used to select appropriate variables for back-pressure formation to generate ribs of various sizes and shapes without defects. The reliability of the analysis was verified to manufacture the prototype. The effect of back-pressure can be verified via fabrication of prototypes as well as structure and forming analysis based on finite element method. The process design factor of back-pressure increases formability without defects of under-filling and flow-through. Moreover, the tensile strength was maintained even after high temperature plate forging at 370 ℃, and the elongation was improved.

알루미늄 소재의 레오로지 직접단조공정에서 가압력이 액상 편석에 미치는 영향 (The Effect of Pressure on Liquid Segregation in Direct Rheo-Forging Process of Aluminum Alloys)

  • 오세웅;배정운;강충길
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.178-186
    • /
    • 2007
  • Rheo-forging process of aluminum alloy is suitable for large parts of net shape without defects and excellent mechanical properties in comparison with conventional die casting and forging process. To control the microstructure of the product with high mechanical properties in rheo-forming, solid fraction is required to prevent porosity and liquid segregation. Therefore, in rheo-forging process, die shape, pressure type and solid fraction are very important parameters. The defects such as porosity, liquid segregation and unfitting phenomena occur during rheo-forging process. To prevent these defects, mechanical properties and microstructure analysis of samples versus the change of pressure are carried out and the problem and its solutions are proposed. Also, the mechanical properties versus various pressures were compared with and without heat treatment. The alloys used for rheo-forming are A356 and 2024 aluminum alloy. The rheology material is fabricated by electromagnetic process with controlling current and stirring time.

단조하중 감소를 위한 열간 형단조공정 해석 (An Analysis of Hot Closed-Die Forging to Reduce Forging Load)

  • 김헌영;김중재;김낙수
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2970-2981
    • /
    • 1993
  • In hot closed-die forging the load increases rapidly near the final stage. Preforming operation is important to both the sound final forging and die-service life. In this study, the material flows during preforming and final forging are investigated. The physical modeling with Plasticine as a model material showed clear flow patterns. The forging process were numerically simulated by the finite element method with the isothermal and the non-isothermal models. The flow patten of the isothermal simulation showed good agreements with the experiments. Temperature changes and pressure distributions on the die surfaces during one cycle of the forging process were obtained from the non-isothermal simulation. High pressure and temperature were developed at certain areas of the die surfaces. It was concluded that those areas usually coincide with each other and should be distributed by the preforming operations to enhance the die life.

알루미늄소재의 만용융성형 공정에서 구상화의 크기가 기계적 성질에 미치는 영향 (The Effect of Globule size on the Mechanical Properties in Semi-Solid Forming of Aluminium Alloys)

  • 박상문;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2002
  • One of the factors influences on microstructure of semi-solid product is forging pressure. Generally, the more forging pressure makes the more fine microstructure in semi-solid compression test. The microstructure and mechanical properties were investigated according to the forging pressure. The applied pressure is 110MPa, 140MPa and 170MPa, respectively. Heat treatment conditions also influence to the microstructure and mechanical properties of semi-solid product. T6 heat treatment was performed and the evaluation of microstructure and mechanical properties was investigated according to the aging time in T6 heat treatment.

  • PDF

자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석 (3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit)

  • 이영선;이정환;이준용;배명한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF

배압성형을 이용한 냉간단조 헬리컬 기어의 치수정밀도 향상에 관한 연구 (A Study on Improvement of Dimensional Accuracy of Cold forged Helical Gears using Back Pressure Forming)

  • 김홍석;정현철;이영선;강성훈;이일환;최석탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.139-142
    • /
    • 2009
  • As important mechanical elements, gears have been used widely in power transferring systems such as automobile transmission and there have been several researches trying to make gear parts with cold or warm forging in order to reduce cost and time required to gear manufacturing process. Although forging processes of spur and bevel gears have been developed as practical level owing to active previous researches in Korea, the manufacturing of helical gear has been still depended on traditional gear cutting processes such as hobbing, deburring and shaving. In order to manufacture helical gears with cold forging process, a research project supported by government has been conducted by Daegu university, KIMS and TAK and this paper deals with effects of back pressure forming technique to cold forging of helical gear as a fundamental research.

  • PDF

Powder Forging of Rapidly Solidified hi-Si Alloy with Back Pressure

  • Kohno, T.;Kawase, K.;Otsuki, M.;Morimoto, K.
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.319-323
    • /
    • 1998
  • Powder forging with a back pressure was investigated for production of automobile and compressor parts made of a rapidly solidified Al-Si alloy powder. Disk-shaped green compacts made of a rapidly solidified Al-Si alloy powder were hot forged, and hubs were formed by loading back pressure on their top. The influences of the back pressure and die temperatures on forgeabiliy and properties of parts made of a rapidly solidified Al-Si alloy powder were examined. This method was also applied to the production of a scroll part. The results of these studies are summarized as follows : 1. A back pressure on the hub top is very effective for consolidation and preventing crack formation in the hub. 2. When a back pressure tess than 98 MPa is applied, the forging pressure increases by the same amount of the applied back pressure. With more than 98 MPa, the forging pressure increases further due to an increased friction at the hub side. 3. Die temperatures higher than approximately 670k are needed in order to consolidate well the hub top without cracks.

  • PDF

AI7075합금의 정밀단조시 금형설계와 단조조건의 영향(l)-실험과 상계해석을 중심으로- (The Effect of Die Design and Process Condition in Precision Forging for AI7075 Alloy(l))

  • 이영선;이정환;정형식;이상용;이동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.105-112
    • /
    • 1996
  • Aluminium alloy have been used extensively as forging materials for aircraft components due to their high specific strength and corrosion resistance. A large portions of these materials are used as airframe components consisted of various combination of such Rib-Web structure. But the problem of high forging pressure and defect which were caused by narrow Rib thickness prevented from the favorable developments and laboratory scaled trials. In this study, optimization of forging variables such as corner radius and temperature in Rib-Wed structure were established. The 2 mm of corner radius minimized the forging pressure to get the fixed Rib height, which well coincided with theoretical result according to Upper-Bound analysis. And optimum workpiece temperature was below 450$^{\circ}C$ in consideration of grain growth and forging defects by local melting.

  • PDF