• Title/Summary/Keyword: Forging Made

Search Result 129, Processing Time 0.019 seconds

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 한정영;최철현;배원병;김영호;이종헌
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.204-208
    • /
    • 2000
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity, geometrical size, and die velocity of model materials are different from those of real materials. Actually, the forming load of yoke, which is an automobile part made of aluminum alloys(Al-6061), is predicted by using this approximate similarity theory. Firstly, upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061), and a suitable model material is selected for model material test of Al-6061. And then hot forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material, which has been selected from above upset forging tests. The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

A Study on Magnesium Alloy Impeller Manufacturing Process using Finite Element Simulation (유한요소해석에 의한 마그네슘 합금의 임펠러 제조공정연구)

  • Kim, S.D.;Kang, S.H.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.139-142
    • /
    • 2007
  • This study focuses on the manufacturing process of a magnesium alloy impeller used for the fuel cell car using the hot forging technology. The impeller has the very complicated shape with sharply curved blade and thus generally produced by mechanical machining or casting process. However, since these technologies give the high manufacturing cost or poor mechanical properties, the forging technology is required to make the high-quality impeller with the lower manufacturing cost. In order for production of the impeller by forging technology, the parametric studies using finite element analyses were carried out to find the optimal perform shape of impeller made of magnesium alloy AZ 31 and finally die design was proposed based on the simulation results.

  • PDF

Reason of Die Fracture in Automatic Multistage Cold Forging of a High Strength Ball-Stud (고강도 재료의 볼스타드 냉간자동단조에서 발생한 금형의 파괴 원인 분석)

  • Li, Q.S.;Eom, J.G.;Kim, Y.S.;Kim, E.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.124-127
    • /
    • 2009
  • In this paper, a longitudinal die insert fracture which occurred during cold forging of a high strength ball-stud with a sound die design nearly optimized empirically for relatively low strength material of SCM435 is introduced and the reason is revealed. A comparative study between SCM435 and ESW105 is quantitatively made using a thermoelastic finite element method for die structural analysis coupled with a forging simulator theoretically based on a rigid-plastic finite element method. It has been shown that the longitudinal die insert fracture caused from non-optimized value of shrink fit, emphasizing that the die optimal design is inevitable for cold forging of high strength materials.

  • PDF

Design and Analysis of precision Forging Process by Utilizing Pneumatically Operated Enclosed Die Set (공압식 폐쇄다이세트 적용 정밀단조공정 설계 및 해석기술)

  • Lee, K.S.;Eom, D.H.;Kang, S.H.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.382-386
    • /
    • 2009
  • This paper describes design and analysis techniques of cold forging process for precise producing of T-200 type spider made of SCr420H by utilizing pneumatically operated enclosed die set. Since deducing feasible closing force is an important factor to optimize entire pneumatically operated cold forging system, a series of FE analyses with varying the number of gas cylinders has been carried out to investigate the influence of closing force upon the direction of applied load at die surfaces. It also reveals the optimum distribution of the gas cylinders in terms of the flatness of upper/lower plates.

  • PDF

Development of precise clutch gear for automobile transmission by compound forging process (복합단조공법을 이용한 자동차 트랜스미션용 클러치 기어 개발)

  • Lee Kwang-O;Kim Jung-Min;Je Jin-Soo;Kang Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.185-192
    • /
    • 2006
  • A manufacturing process for a clutch gear which demands high strength and wear resistance, was developed by means of computer simulation. A preform was made by hot forging process and subsequent cold sizing process is applied to complete precise tooth part. Processes to obtain high dimensional accuracy and superior mechanical properties are analyzed and optimal heat treatment cycle to improve cold forgeability is introduced. Prototype was produced and the dimensional accuracy of the prototype was inspected to verify proposed process.

Development of the Large Tubesheet Forgings for Nuclear Power Plant (원자력 발전소용 대형 튜브시트 단강품의 개발)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.176-179
    • /
    • 2006
  • Large tubesheet forgings of the steam generator for the 1,400MW nuclear power plant has been developed. Steam Generator is one of the most important structural part for nuclear power plant. It is manufactured by various steel forgings such as shell, head, torus and tubesheet. These steel forgings have been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the forging process development and manufacturing experience of large tubesheet forgings which will be used for the steam generator of 1,400MW nuclear power plant.

  • PDF

Near Net Shape Design of an Exhaust CAM for Vessel Engine (선박엔진용 배기캠의 정밀성형설계)

  • Yeom, J.T.;Kim, J.H.;Kim, J.H.;Hong, J.K.;Lee, J.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The hot forming process of an exhaust CAM for vessel engine was designed by finite element(FE) simulation and experimental analysis. An aim of process design was to achieve the near-net shaped CAM forgings by hot forging process. Based on the compression test results of the low alloy steel, power dissipation map was generated using the the dynamic materials model(DMM). From the map, the initial heating temperature was determined as 1200oC. FE analysis was simulated to predict the formation of forging defects and deformed shape with different forging designs. Optimum process design suggested in this work was made by comparing with the CAM for vessel engine manufactured by actual forging process.

Tensile Behavior of Cast-Forged Al-Si-Mg Alloy (주/단조 Al-Si-Mg 합금의 인장 거동)

  • Kim K. J.;Kwon Y.-N.;Lee Y. S.;Jeong S. C.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.329-332
    • /
    • 2004
  • Cast-forging process has a lot of advantages in terms of saving materials along with enhancement of mechanical properties. Therefore, this process has been taken as one of candidate process to manufacturing automotive suspension parts. Since most of cast-forging parts are made with using Al-Si alloys of high castability, the mechanical properties largely depends on the primary ${\alpha}$ and eutectic Si particles. During hot forging step these microstructural features evolve with strain increment. In the present study, the mechanical property evolution was investigated in terms of microstructual evolution with strain. Specially, fracture behavior of A356 alloy was studied to find out how to improve the mechanical properties.

  • PDF

Development Trend of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 개발동향)

  • Kim D. K.;Kim D. Y.;Kim Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.06a
    • /
    • pp.131-139
    • /
    • 2005
  • Reactor Vessel is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings has been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the development trend of the open die forging process and manufacturing experience of large head forgings which canl be used for the reactor vessel of nuclear power plant.

  • PDF

Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials (경량화 소재의 반용융 및 주조/단조기술)

  • 강충길;최재찬;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF