• Title/Summary/Keyword: Forging Die Life

Search Result 66, Processing Time 0.023 seconds

Process Design for Improving Tool Life in Hot Forging Process (열간 단조 공정에서 금형 수명 향상을 위한 공정 설계)

  • 이현철;김병민;김광호
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

Forming load and stress analysis according to cold forming process of microalloyed forging steel (비조질강의 냉간 성형공정에 따른 성형하중 및 금형응력 해석)

  • Lee S.H.;Kim J.H.;Park N.K.;Lee Y.S.;Suh D.W.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.405-408
    • /
    • 2004
  • The forming load and the stress applied to dies during cold forming of automotive part using microalloyed forging steel are examined with finite element analysis. The forming load and the stress applied to dies at each process step are investigated for two types of forming process. The changes in forming process significantly affect the variation of firming load and the stress at each process step, thus it is considered that the die lift will be remarkably changed with the type of forming process, therefore optimal process design is necessary to obtain an increased the die life and to make the die life uniform at each process step.

  • PDF

Die System for Avoiding Thickness Reduction along the Bent Corner in Warm Plate Forging of an Axle Housing (액슬하우징의 온간 후판단조에서 굽힘 변형된 모서리에서 발생하는 두께 감소 방지를 위하여 고안된 금형 시스템)

  • Kim, J.S.;Kim, K.S.;Shim, S.H.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.447-451
    • /
    • 2010
  • In this paper, a useful die system for warm plate forging of a large axle housing of heavy-duty trucks is presented. A die system composed of material flow guide pin as well as upper die and lower die is proposed to reduce the inherent thickness reduction along the bent corner of the product which deteriorates structural strength and fatigue life in its service. The role of the pin assembled in the upper die is to prevent formation of sharp corner in early forming stage and to supply material in the lower die cavity sufficient enough to thicken the bent corner at the final stroke. The mechanism of the die system is given and its effect on corner thickness of the product is revealed by two-dimensional finite element analysis under plain strain assumption. Three-dimensional finite element solutions are also given to verify validity of the two dimensional approach and to show the mechanics of the die system in detail. The die system has been successfully applied to manufacturing the axle housing of heavy-duty trucks.

A Study in the Heat Resistance Properties of STD61 Steel using the Surface Hardening Method (STD61 강의 내열특성향상을 위한 표면경화에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.26
    • /
    • pp.121-132
    • /
    • 1996
  • The carburising surface modification treatment of the die steel has been used for improving wear resistance and heat cycle strength of the die and preventing a pitting on the surface because the carbides are forming in the matrix during carburising. Generally, the hot forging die was used after quenching-tempering treatment or nitriding after quenching-tempering treatment. The nitriding after carburising on the surface of a hot die steel and a wear resistance die steels was suggested by SOUCHARD, JACQUOT. and BUVRON. This surface modification treatment improved the adhesive and abrasive wear resistance and friction coefficient. The process was introduced to the forging die of stainless steel, titanium alloy steel, alloy and medium carbon steel and the physical properties of the die after the treatment were improved. The surface hardening treatment of the nitriding, the carburising, the boriding, and TD process were used to improved the life time of the forging die. Also, the coating process of PVD, CVD and PCVD were used and the hard chromium plating was occasionally used. Therefore, this study analyzed the effects of the carburising time and the conditions of nitriding on STD61 steel. The case depth, the surface hardness, the forming carbide size and shape during overcarburising process on the die steel were also examined.

  • PDF

Temperature-dependence of Mechanical Properties of Die Steel STD61 (금형강 STD61의 온도에 따른 기계적 성질의 변화)

  • 여은구;이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.435-440
    • /
    • 2004
  • The temperature in hot forming of metallic materials, such as hot extrusion and hot forging, ranges from $300^{\circ}C$ to $900^{\circ}C$. Correspondingly, the die also exhibits high temperatures close to that of a work piece and its life is limited generally by high temperature fatigue. Thus, the analysis of high temperature fatigue would need the mechanical properties over the wide ranges of temperature. However, very few studies on the high temperature fatigue of brittle materials have been reported. Especially, the study on the fatigue behavior over such transition temperature regime is very rare. In this paper, the stress-strain curves and stress-life curves of a die steel such as STD61 are experimentally obtained. The wide ranges of temperature from $300^{\circ}C$ to $900^{\circ}C$ are considered in experiments and the transition temperature zone is carefully examined.

Lengthening of Hot Forging Die Life for Flange Yoke Forming (플랜지 요크 성형용 열간단조 금형의 수명 연장)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.36-41
    • /
    • 2003
  • The purpose of this study was to find a way to lengthen the life of hot closed forging die. The fluid interpretation on the plastic deformation of billet of billet was performed by finite element method. And design modification on the impression shape was also performed. The defaced part on the impression surface was mended by the developed build-up welding method. The die life was 3,000 units but alter the procedure it was lengthened up to 5,000.

  • PDF

Analysis of Residual Stress Development in Open-Die Forged Axisymmetric Parts Using FEM (축대칭 형상 자유단조품의 잔류응력 형성에 대한 유한요소해석)

  • Bang W.;Jung J. Y.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.233-235
    • /
    • 2001
  • Residual stress in the forged parts affects the resistance to mechanical failure, dimensional uniformity, and the service life of the parts. In order to elucidate the development of residual stress in open-die forging process, elasto-plastic finite element analysis was implemented to radial forging process. Super duplex stainless steel SAF 2507 was selected as workpiece material and a series of mechanical tests followed by numerical compensation to deformation heating was conducted to obtain necessary flow data. The residual stress distributions were calculated using commercial 3-D FEM code and the effects of process design were evaluated from selected results.

  • PDF

Case studies for productivity enhancement on cold forging (냉간단조 생산성 향상 사례)

  • Choi, S.T.;Lee, I.H.;Kwon, Y.C.;Lee, J.H.;Lee, C.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.42-47
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. The shape and process changes of die, the hardness changes of material and the tolerance of dies to decrease the die stress are analyzed by the FEM software. The heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product..

  • PDF

Development of Accurate Bevel Gear Die (정밀 베벨 기어 금형개발)

  • 이광오;진민호;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.43-46
    • /
    • 2003
  • To develop bevel gear dies that have characteristics of high precision and enough life time, the technology of die manufacturing and design which increase the resistance of wear and fatigue is essentially needed. Here in the study, we have investigated several materials for dies and electrode. And, the most economical and suitable electrode material has been selected through the characteristic analysis of electrode materials such as copper, graphite and chromium copper. With the help of CAD/CAM/CAE, the total manufacturing system of high precision electrode for bevel gear has been established.

  • PDF