• Title/Summary/Keyword: Forged Steel

Search Result 101, Processing Time 0.021 seconds

Direct Heat Treatment of Alloyed Steel Forging (가공열을 이용한 합금강 단조품의 열처리)

  • Kwon, Y.N.;Kim, T.O.;Kwon, Y.C.;Park, D.G.;Lee, S.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.431-434
    • /
    • 2008
  • In the present study, direct quenching of alloyed steel after hot forging was simulated using commercial finite element program, $FORGE^{TM}$. A typical heat treatment of alloyed steels consists of quenching for hard martensite and subsequent tempering for toughness. In the practice, forgings which cool down to room temperature are heated to temperature of austenite regime. As investigated in the present study, direct quenching of hot forged stock would be beneficial in terms of energy saving. This process has already been propose and termed as ausforging or forged hardening. However, it is well known that quenching temperature would be the most critical factor to control heat treated forging properties. And it is very difficult to control quenching temperature when forged stock gets directly quenched after forging. In this study, we have calculated final forging temperature of stock. Also, quenching simulation was conducted using a series of material parameter which were also calculated using JMATpro, a commercial program for physical properties of materials.

  • PDF

Microstructure investigation of iron artifacts excavated from Kkonmoe relic located in Suwon-si (수원시 꽃뫼 유적 출토 철제유물의 미세조직 분석)

  • Yu, Jae-Eun;Go, Hyeong-Sun;Lee, Jae-Sung
    • 보존과학연구
    • /
    • s.23
    • /
    • pp.131-147
    • /
    • 2002
  • Kkonmoe relic located in Jangan-gu, Suwon-si, Gyeonggi-do Provinceis an example of the wide chronology from the Three Kingdoms Period to Joseon Dynasty. Examinations on a forged iron ax, a cast iron ax and an iron sickle excavated from this relic revealed the microstructure structure of the metal and the manufacturing technologies. Microstructure investigation was carried out with a metallurgical microscope and a Vickers hardness tester was used to measure the hardness of the micro structures. The test results show that the forged iron ax has a ferrite and pearlitestructure. It is made of low carbon steel and then carbonized to increase carbon content. After carbonization, the surface grains are reworked and the surface decarbonized. In case of the iron sickle, it is forged from low carbon steel, then carbonized and hardened, to increase overall strength. The sickle blade is carbonized and quenched after forging, resulting in afirm, solid blade. Heat treatment to remove brittleness is not applied to the cast ironartifact, which is manufactured by solidifing hypo-eutectic cast iron with a3-4% carbon content and white cast iron. All artifacts are produced from steel and subjected to a carbonization process. To increase hardness of the blade, additional heat treatment is applied.

  • PDF

Nonmetallic Inclusion in the Large Steel Ingot Casting Process (대형강괴 주조공정 중 비금속개재물 저감연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.52-56
    • /
    • 2008
  • Inclusions in forged large steel ingots of plan carbon steel and tool steel are investigated using optical microscop observation and WDX analysis. The large nonmetallic inclusions which is over $30\sim300{\mu}m$ in their diameter were observed in the samples that has been no good on a nondestructive test. The most of the inclusions were consist of some kind of oxides, ${Al_2}{O_3}$, $SiO_2$, CaO, MgO in forms of particles and glassy with an iron particles. The experimental large steel ingot was cast with a pouring temperature which is about ten centigrade higher than the field standard. The inclusions were observed in the test ingot are the smaller than that was in a usual forged steel ingot and is spherical shape with a glassy agglomerated ${Al_2}{O_3}-SiO_2-CaO-MgO$ particle. The pouring temperature is affected on removing the nonmetallic inclusions during the solidification by a floating mechanism.

  • PDF

Microstructure change of large cast-forged product by heat treatment conditions (열처리 공정이 대형 주단조품의 조직변화에 미치는 영향)

  • Lee, M.W.;Lee, Y.S.;Lee, S.W.;Lee, D.H.;Kim, S.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.102-106
    • /
    • 2009
  • Thermal energy control is a important factor in a large size casting and forging. Good control of thermal energy makes characteristics and defect of large cast-forged part, such as large sized forged shell. We have studied about not only large size ring forging process and after heat treatment by FEM simulation. Also, changes of temperature and microstructure for forged shell were predicted. Therefore, we can choose the proper heat treatment condition by FEA. The sectional properties confirmed by practical experiment and evaluation have presented possibilities of process design by computational analysis.

  • PDF

Failure Analysis of Large Ring Forged Products (대형 링단조품의 결함원인 분석 및 대책)

  • Jin, S.U.;Lee, Y.S.;Kim, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.107-113
    • /
    • 2009
  • In this study, the importance of failure analysis on large ring forged products was assessed and the process and methodology were introduced. Failure analysis case study of the large ring forged steel product with approximately 10 mm long internal crack found by non-destructive test (NDT) was presented. The micrographic and fractographic observations and the verifying tests were conducted on the cracked specimen to identify the possible metallurgical reason for the defects, and the metallurgical aspects of internal crack formation were discussed.

  • PDF

Mechanical Properties of Surface Densified PM Gears (표면치밀화 기술에 의해 제조된 소결 기어의 기계적 특성)

  • Kim, Ki-Jung;Kim, Ki-Bum;Lee, Doo-Hwan;Park, Jong-Kwan;Jeong, Dong-Guk
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.189-195
    • /
    • 2012
  • A novel PM (powder metallurgy) steel for automotive power-train gear components was developed to reduce manufacturing cost, while meeting application requirements. The high-density PM steel was manufactured by mixing using special Cr-Mo atomized iron powders, high-pressure compaction, and sintering. Tensile strength, charpy impact, bending fatigue, and contact fatigue tests for the PM steel were carried out and compared to conventional forged steel. Pinion gears for auto-transmission were also manufactured by helical pressing, sintering, and surface densification process. In order to evaluate the durability of the PM parts, auto-transmission durability tests were performed using dynamometer tests. Results showed that the PM steel fulfilled the requirements for pinion gears indicating suitable tensile, bending fatigue, contact fatigue strengths and improved gear tooth profile. The PM gears also showed good performance during the transmission durability tests. As a result, the PM gears showed significant potential to replace the conventional forged steel gears manufactured by tooth machining (hobbing, shaving, and grinding) processes.

Effect of Zr Addition on the Mechanical Properties and MnS Morphology of Cr-Mo Plastic Mold Steel (Cr-Mo계 금형강의 기계적 성질과 MnS 형상 변화에 미치는 Zr첨가의 영향)

  • Kim, Nam-Kyu;Jeon, Ho-Sung;Lee, Oh-Yeon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.191-197
    • /
    • 2010
  • Zr addition is known as effective method to improve the anisotropy of steel due to the elongated MnS inclusions which are observed in hot forged steels. The aim of this research is to investigate the effect of Zr addition on the mechanical properties and manganese sulphide morphology of 0.27%C-Cr-Mo plastic mold steel. The ingots were prepared by vacuum induction melting and forged to ${\Phi}35mm$ round bar. Forged bars were quenched and tempered at $560{\sim}640^{\circ}C$ for 1 hour. Jominy test, microstructual observation, tensile test and Charpy impact test were conducted. The morphology of MnS inclusions was changed by Zr addition. The shape of MnS inclusions was not so much lengthened and controlled not to be elongated by Zr inclusions which surround the MnS inclusions. Tensile strength and yield strength of the tempered steels were not nearly affected by the addition of Zr, but elongation and reduction of area were decreased. Especially, the toughness of Zr added steels was deteriorated with increasing of Zr content. From the results of this study, it is assumed that anisotropy of steels was improved by the addition of Zr. However, impact toughness of the steel was significantly decreased by the excessive Zr addition (over 0.066%).

Estimation of Hardness using DEFORM$^{TM}$ in SKH9 High Speed Steel (DEFORM$^{TM}$을 이용한 SKH9 고속도공구강의 경도 예측)

  • Park, Joon Hong;Sung, Jang Hyun;Kim, Young Hee;Lee, Hae Woo;Jeon, Eun Chan;Park, Young Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.175-180
    • /
    • 2007
  • The hardness of cold-forged products is in close relationship with its effective strain. This study presented the estimating method of hardness for cold-forged SKH9 products without hardness tests in view of resistance to plastic deformation using finite element code, DEFORM$^{TM}$. The flow stress equation obtained from the compression test was only used as a basic data to estimate the relationship between effective strain and hardness. In addition, this new estimating method was applied to the cold-forged product which was widely used in industrial field to show the feasibility. As a result, the predicted hardness numbers through FE simulation showed good agreement with the measured hardness numbers. It is possible to estimate the hardness not by hardness tests, but by only computer simulations for the deformed products. Also, effective strain values were possibly estimated by measuring hardness numbers, and vice versa.

Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.54-58
    • /
    • 2015
  • A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.