• Title/Summary/Keyword: Forged Material

Search Result 123, Processing Time 0.028 seconds

Analysis of Microstructures in a Forged Ti-6Al-4V Disk (Ti-6Al-4V 단조 디스크의 미세조직 분석)

  • 김대영;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.202-209
    • /
    • 1997
  • The mechanical properties of Ti-6Al-4V greatly vary for changes of microstructures. Therefore, when manufacturing components with this material, it is important to understand the influence of process parameters to the resulting microstructures. In the present investgation, it was attempted to relate the process parameters with the microstructures in a hot forged Ti-6Al-4V disk. The investigation was carried out by a rigid thermo-viscoplastic FEM analysis, flow stress measurements and microstructure studies. It was found that the dynamic recrystallization would hardly occur in this material and that variations of strain, strain rate and temperature of several locations in the disk were below the assumed dynamic recrystallization zone. These findings confirmed the experimental obervations that the microstructures in the disk were only deformed without being recrystallized.

  • PDF

Direct Heat Treatment of Alloyed Steel Forging (가공열을 이용한 합금강 단조품의 열처리)

  • Kwon, Y.N.;Kim, T.O.;Kwon, Y.C.;Park, D.G.;Lee, S.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.431-434
    • /
    • 2008
  • In the present study, direct quenching of alloyed steel after hot forging was simulated using commercial finite element program, $FORGE^{TM}$. A typical heat treatment of alloyed steels consists of quenching for hard martensite and subsequent tempering for toughness. In the practice, forgings which cool down to room temperature are heated to temperature of austenite regime. As investigated in the present study, direct quenching of hot forged stock would be beneficial in terms of energy saving. This process has already been propose and termed as ausforging or forged hardening. However, it is well known that quenching temperature would be the most critical factor to control heat treated forging properties. And it is very difficult to control quenching temperature when forged stock gets directly quenched after forging. In this study, we have calculated final forging temperature of stock. Also, quenching simulation was conducted using a series of material parameter which were also calculated using JMATpro, a commercial program for physical properties of materials.

  • PDF

Thermal and Mechanical Properties of Electro-Slag Cast Steel for Hot Working Tools

  • Moon Young Hoon;Kang Boo Hyun;Van Tyne Chester J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.496-504
    • /
    • 2005
  • The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel. AISI-6F2 is a hot-working tool steel. Electro-slag casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode. The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape. In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and forged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel.

A Study on Forging Effect of Cup-Shaped Powder Forging Product According to the Shape of Preforms (컵형상 분말단조품의 예비성형체 형상에 따른 단조효과에 관한 연구)

  • Park, Jong-Ok;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.63-68
    • /
    • 2000
  • The purpose of this paper is to compare the forging effects according th the shape of preforms of cup shaped powder forging product, and extend the application of powder forging technology to more complicated cup-shaped products like pistons. In order to this, preforms are provided by compacting, sintering, and machining in various shapes, then forged to final shape of products. The workability for sintered aluminium powder material is examined. Density and strain loci of forged products are compared, and the most effective shape of preform is proposed. The preform for a piston of 50mm in diameter is provided and hot forged to final product.

  • PDF

Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.54-58
    • /
    • 2015
  • A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

Evaluation of Microstructural and Mechanical Property of Medium-sized HT9 Cladding Forged Material for Sodium-cooled Fast Reactor (소듐냉각고속로 피복관용 중형 HT9 단조품 소재의 미세조직 및 기계적 특성 평가)

  • Kim, Jun-Hwan;Lee, Kang-Soo;Kim, Sung-Ho;Lee, Chan-Bock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Microstructural and mechanical property were evaluated at the medium-sized HT9 (12Cr-1MoWV) forged steel which was considered as primary candidate for the fuel cladding in sodium-cooled fast reactor (SFR). Material was forged at $1170^{\circ}C$ after the induction melting to make round bar as 160mm diameter, 7000mm length then the radial distribution of microstructure as well as microhardness was evaluated. The results showed that overall microstructure exhibited as ferrite-martensite structure, where small amount (2~3%) of delta ferrite was formed throughout the specimen and maximum 15% of transformed ferrite was formed at the center, where it gradually decreased toward the radial direction. Sensitivity analysis of the cooling curve and Time-Temperature-Transformation (TTT) diagram revealed that formation of transformed ferrite could be avoided when the diameter was decreased down to 120mm.

Forging Process Design to Improve the Properties of Al Alloy Forged Part for Aerospace (항공기용 Al 합금 단조품의 특성 향상을 위한 단조 공정 설계)

  • Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.228-232
    • /
    • 2001
  • Fatigue strength, electrical conductivity and stress-corrosion-cracking resistance are considered as important factors at aircraft Al alloys, therefore Al7050 alloy has been developed to improve such properties. However, hammer-forged Al7050 parts showed the undesirable structures such as severe local grain coarsening and inhomogeneous material flow, resulted in the degraded mechanical properties. In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the cases of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

  • PDF

A STUDY ON DISTORTION OF BEVEL GEARS AND DIE INDUCED BY FORGING AND HEAT TREATMENT

  • Cho J.R.;Kang W.J.;Kim M.G.;Lee J.H.;Lee Y.S.;Bae W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.73-79
    • /
    • 2003
  • Recently many kinds of gears have been produced by forging in order to enhance the mechanical properties of the gears and the productivity of the process. Developments in forging technology are the reason for the increased usage. However, a critical problem of the forged gears is the dimensional change or distortion caused by elastic recovery after forging, and relief of the residual stresses during subsequent heat treatments. Distortion is of great concern to the manufacturers of precision parts, because it influences directly the dimensional accuracy and the grade of carburized bevel gears. In the present paper, distortion due to cold forging and heat treatment of bevel gears is investigated. Distortions of forged gears, machined gears and die are measured and compared. Numerical analysis is used to simulate the complete cold forging process and heat treatment process for the machined gears and shows good agreement with the experimental measurements.

  • PDF

Analysis of Residual Stress Development in Open-Die Forged Axisymmetric Parts Using FEM (축대칭 형상 자유단조품의 잔류응력 형성에 대한 유한요소해석)

  • Bang W.;Jung J. Y.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.233-235
    • /
    • 2001
  • Residual stress in the forged parts affects the resistance to mechanical failure, dimensional uniformity, and the service life of the parts. In order to elucidate the development of residual stress in open-die forging process, elasto-plastic finite element analysis was implemented to radial forging process. Super duplex stainless steel SAF 2507 was selected as workpiece material and a series of mechanical tests followed by numerical compensation to deformation heating was conducted to obtain necessary flow data. The residual stress distributions were calculated using commercial 3-D FEM code and the effects of process design were evaluated from selected results.

  • PDF

Process Design of Cold Forged Hub by Flow Control Forming Technique (유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계)

  • Park, Jong-Nam;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.