• 제목/요약/키워드: Forestry Engineering

검색결과 389건 처리시간 0.034초

산림부문의 국가온실가스 배출·흡수계수 개발 필요 우선순위 및 정량평가 방법론 (Priority for Developing Emission Factors and Quantitative Assessment in the Forestry Sector)

  • 한승현;이선정;장한나;김성준;김래현;전의찬;손요환
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.239-245
    • /
    • 2017
  • This study aimed to suggest priority for developing emission factor (EF) and to develop the methodology of quantitative assessment of EF in the forestry sector. Based on the stock-difference method, 17 kinds of EFs (27 EFs based on forest types) were required to calculate the carbon emission in the forestry sector. Priority for developing EFs followed the standards, which is a development plan by the government agency, importance of carbon stock for greenhouse gas, and EFs by the species. Currently, the most urgent development of EFs was carbon fraction in biomass and carbon stock in dead wood. Meanwhile, the quantitative assessment of EF consisted of 7 categories (5 categories of compulsory and 2 categories of quality evaluation) and 12 verification factors. Category in compulsory verification consisted of administrative document, determination methodology of emission factors, emission characteristic, accuracy of measurement and analysis, and data representative. Category in quality evaluation consisted of data management and uncertainty estimates. Based on the importance of factors in the verification process, each factor was scored separately, however, the score needs to be coordinated by the government agency. These results would help build a reliable and accurate greenhouse gas inventory report of Korea.

Decay of Populus cathay Treated with Paraffin Wax Emulsion and Copper Azole Compound

  • Liu, Jie;Liu, Min;Hou, Bingyi;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권1호
    • /
    • pp.21-32
    • /
    • 2019
  • In order to investigate the decay process of wood treated with preservative, waterproofing agent and their compound systems, a full-cell process was applied to impregnate the sapwood of poplar (Populus cathay) at paraffin wax emulsion concentrations of 0.5% and 2.0%, Copper Azole (CA) concentrations of 0.3% and 0.5%, and their four compound systems, respectively. Leaching tests and laboratory decay resistance against the white-rot fungus Corious versicolor (L.) Murrill for treated wood were carried out according to the America Standard E11-06 and China Standard GB/T 13942.1-2009. At certain time intervals during the decay test, samples were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction technique (XRD) to investigate the time-dependent changes of chemical components and crystalline structure, thus clarifying the decay mechanisms. The results suggested that white-rot fungi degrade hemicellulose and lignin in the wood cell wall first, followed by a simultaneous degradation of polysaccharides and lignin. Besides, CA could not only slower the decomposition of both hemicellulose and lignin, but also reduce the degradation amount of hemicellulose. However, paraffin wax emulsion at high concentration had a negative effect on the impregnation of CA for the compound system treated wood.

탐방로 재난 위험성 평가를 위한 위험지수 개발 (Development of an Index for the Risk Assessment of Walking Trail)

  • 곽재환;김홍균;김열;김만일;이문세
    • 지질공학
    • /
    • 제28권3호
    • /
    • pp.379-395
    • /
    • 2018
  • 탐방로의 전체적인 환경은 크게 탐방로 상부, 탐방로 자체, 탐방로 하부로 나누어진다. 본 연구에서는 현장조사를 기반으로 하여 3가지의 탐방로 환경과 인문/사회 요인을 결합하여 탐방로 위험지수를 개발하였다. 탐방로 현장조사를 위해 체크리스트를 개발하였으며, 체크리스트 항목들은 상대적인 중요도 분석과정을 거쳐 점수화 되었다. 항목들의 상대비중 분석은 AHP 기법을 활용하였다. AHP 분석 결과, 탐방로 상부 환경이 나머지 환경들에 비해 2배 중요한 것으로 나타났으며, 각 환경들에 속한 항목들의 중요도 및 배점이 정해졌다. 위험지수는 항목들의 총합으로 계산되었으며, 기조사 자료를 이용한 가중치가 더해졌다. 위험지수는 총점 200점으로 설정하였으며, 최대 159점, 최소 64.2점으로 산출되었다. 현장 상황과 위험지수의 비교 분석 결과, 위험성이 낮은 구간은 대부분 100점 이하의 값을 보였으며, 위험성이 매우 높거나 사고이력을 가지는 구간은 140점을 초과하는 것으로 나타났다.

Biodiesel Production: Utilization of Loofah Sponge to Immobilize Rhizopus chinensis CGMCC #3.0232 Cells as a Whole-Cell Biocatalyst

  • He, Qiyang;Xia, Qianjun;Wang, Yuejiao;Li, Xun;Zhang, Yu;Hu, Bo;Wang, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1278-1284
    • /
    • 2016
  • Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40℃ and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production.

U.S. Forest Service Research : Its Administration and Management

  • Krugman, Stanley L.
    • 한국산림과학회지
    • /
    • 제76권3호
    • /
    • pp.243-248
    • /
    • 1987
  • The U.S. Forest Service administers the world's largest forestry research organization. From its modest beginning in 1876, some 30 years before the United States national forest system was established, the research branch has devoted its effort to meet current and future information needs of the forestry community of the United States, not just for the U.S. Forest Service. The research branch is one of three major administrative units of the U.S. Forest Service. The others being the National Forest System and State and Private Forestry. Currently the National Forest System comprises 155 national forests, 19 national grasslands, and 18 utilization projects located in 44 states. Puerto Rico, and the Virgin Islands. The National Forest System manages these areas for a large array of uses and benefits including timber, water, forage, wildlife, recreation, minerals, and wilderness. It is through the State and Private Forestry branch that the U.S. Forest Service cooperates and coordinates forestry activities and programs with state and local governments, forest industries, and private landowners. These activities include financial and technical assistance in disease, insect, and fire protection ; plan forestry programs ; improve harvesting and marketing practices ; and transfer forestry research results to user groups. Forestry research is carried out through eight regional Forest Experiment Stations and the Forest Product Laboratory. Studies are maintained at 70 administrative sites, and at 115 experimental forest and grasslands. All of the current sciences that composed modern forestry are included in the research program. These range from forest biology (i. e. silviculture, ecology, physiology, and genetics) to the physical, mathematical, engineering, managerial, and social sciences. The levels of research range from application, developmental, and basic research. Research planning and priority identification is an ongoing process with elements of the research program changing to meet short-term critical information needs(i. e. protection research) to long-term opportunities(i. e. biotechnology). Research planning and priority setting is done in cooperation with National Forest Systems, forest industries, universities, and individual groups such as environmental, wilderness, or wildlife organizations. There is an ongoing review process of research administration, organization, and science content to maintain quality of research. In the U.S. Forest Service the research responsibility is not completed until the new information is being applied by the various user group : I. e. technology transfer program. Research planning and development in the U.S. Forest Service is a dynamic activity. Porgrams for the year 2000 and beyond are now in the planning stage.

  • PDF

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.

N-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1

  • Jin, Wensong;Lin, Hui;Gao, Huifang;Guo, Zewang;Li, Jiahuan;Xu, Quanming;Sun, Shujing;Hu, Kaihui;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.596-606
    • /
    • 2019
  • N-acyl-homoserine lactone quorum sensing (AHL-QS) has been shown to regulate many physiological behaviors in Serratia marcescens MG1. In the current study, the effects of AHL-QS on the biosynthesis of acid and neutral products by S. marcescens MG1 and its isogenic ${\Delta}swrI$ with or without supplementing exogenous N-hexanoyl-L-homoserine lactone ($C_6-HSL$) were systematically investigated. The results showed that swrI disruption resulted in rapid pH drops from 7.0 to 4.8, which could be restored to wild type by supplementing $C_6-HSL$. Furthermore, fermentation product analysis indicated that ${\Delta}swrI$ could lead to obvious accumulation for acidogenesis products such as lactic acid and succinic acid, especially excess acetic acid (2.27 g/l) produced at the early stage of fermentation, whereas solventogenesis products by ${\Delta}swrI$ appeared to noticeably decrease by an approximate 30% for acetoin during 32-48 h and by an approximate 20% for 2,3-butanediol during 24-40 h, when compared to those by wild type. Interestingly, the excess acetic acid produced could be removed in an AHL-QS-independent manner. Subsequently, quantitative real-time PCR was used to determine the mRNA expression levels of genes responsible for acidogenesis and solventogenesis and showed consistent results with those of product synthesis. Finally, by close examination of promoter regions of the analyzed genes, four putative luxI box-like motifs were found upstream of genes encoding acetyl-CoA synthase, lactate dehydrogenase, ${\alpha}$-acetolactate decarboxylase, and Lys-like regulator. The information from this study provides a novel insight into the roles played by AHL-QS in switching from acidogenesis to solventogenesis in S. marcescens MG1.

Impact of Residual Extractives and Hexenuronic Acid on Lignin Determination of Kraft pulps

  • Shin Soo Jeong;Schroeder Leland R;Lai Yuan Zong
    • 펄프종이기술
    • /
    • 제36권5호
    • /
    • pp.62-68
    • /
    • 2004
  • The amount of non-lignin components in unbleached and oxygen-delignified kraft pulps and their impact on lignin determinations was investigated. The lignin analyses investigated were kappa number and Klason lignin in conjunction with acid-soluble lignin. The species investigated were loblolly pine, and aspen. The non-lignin components that impacted on lignin determination were residual extractives and hexenuronic acid in unbleached and oxygen-delignified kraft pulps. In the hardwoods, significant amounts of extractives remained after kraft pulping and oxygen delignification. These residual extractives in the hardwood pulps had an impact on the lignin determination, more so on the acid lignin method than kappa number. Hexenuronic acid only impacts on kappa number determination both softwood and hardwood pulps, not on acid lignin. Hexeneuronic acid contributed as lignin content more in aspen than pine pulps, and more in oxygen-delignified than unbleached kraft pulps. Impact of hexenuronic acid on should be corrected both softwood and hardwood pulps for accurate kappa number.

Treatment of high-salinity wastewater after the resin regeneration using VMD

  • Gao, Junyu;Wang, Manxiang;Yun, Yanbin
    • Membrane and Water Treatment
    • /
    • 제9권1호
    • /
    • pp.53-62
    • /
    • 2018
  • In this study, vacuum membrane distillation (VMD) was used to treat high-salinity wastewater (concentration about 17%) discharged by chlor-alkali plant after resin regeneration. The feasibility of VMD for the treatment of real saline wastewater by using Polyvinylidene fluoride (PVDF) microporous plate membrane with a pore diameter of $0.2{\mu}m$ was investigated. The effects of critical operating parameters such as feed temperature, velocity, vacuum degree and concentration on the permeate water flux were analyzed. Numerical simulation was used to predict the flux and the obtained results were in good agreement with the experimental data. The results showed that an increase in the operating conditions could greatly promote the permeate water flux which in turn decreased with an increase in the concentration. When the concentration varied from 17 to 25%, the permeate water flux dropped marginally with time indicating that the concentration was not sensitive to the decrease in permeate water flux. The permeate water flux decreased sharply until zero due to the membrane fouling resistance as the concentration varied from 25 to 26%. However, the conductivity of the produced water was well maintained and the average value was measured to be $4.98{\mu}s/cm$. Furthermore, a salt rejection of more than 99.99% was achieved. Overall, the outcome of this investigation clearly indicates that VMD has the potential for treating high-salinity wastewater.